Suppr超能文献

热解碳介导增强的微生物降解对 p-硝基苯酚的影响:碳结构和铁矿物的作用。

Enhanced microbial degradation mediated by pyrogenic carbon toward p-nitrophenol: Role of carbon structures and iron minerals.

机构信息

Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Faculty of Environment Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China.

Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Faculty of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China.

出版信息

Sci Total Environ. 2023 Nov 20;900:165797. doi: 10.1016/j.scitotenv.2023.165797. Epub 2023 Jul 27.

Abstract

Pyrogenic carbon (PC) including black carbons and engineered carbons can mediate the extracellular electron transfer to facilitate the biogeochemical reaction with organic pollutants. Yet, the role of carbon structures and iron minerals on PC-mediated microbial degradation is still lacking of understanding. Herein, we studied the electrochemical properties of PCs produced from varied feedstock with regards to the mediated degradation of p-nitrophenol (PNP) by Shewanella putrefaciens CN32 in anoxic system. Mediated degradation by PCs was enhanced by facilitating extracellular electron transfer through oxygenated group and graphitic structure. Graphitic crystallites improved the electron-accepting capacity (as suggested by I/I and EAC) and diminished the electrochemical impedance (as suggested by Rct), contributing to PNP degradation under the anoxic system. Furthermore, more interfacial adsorption was conducive to the mediated reduction by the graphitic structure on PCs of high-temperature. In the presence of iron minerals, both hematite and goethite significantly facilitated PC-mediated degradation, which could be ascribed to the enhancement of the electron-donating capacity of microorganism and the accumulation of the reductive-state PCs by the interaction with generated Fe(II). This work paves a feasible way to the technical design on the remediation of phenolic contaminants by PC-mediated microbial degradation in environment.

摘要

热解碳(PC)包括黑碳和工程碳,可以介导细胞外电子转移,促进与有机污染物的生物地球化学反应。然而,碳结构和铁矿物对 PC 介导的微生物降解的作用仍缺乏了解。在此,我们研究了不同原料制备的 PC 的电化学性质,以及在缺氧体系中 Shewanella putrefaciens CN32 介导的对 p-硝基苯酚(PNP)的降解作用。通过含氧基团和石墨结构促进细胞外电子转移,增强了 PC 的介导降解作用。石墨微晶提高了电子接受能力(如 I/I 和 EAC 所示),减小了电化学阻抗(如 Rct 所示),有助于缺氧体系下 PNP 的降解。此外,更多的界面吸附有利于高温下 PC 上石墨结构的介导还原。在铁矿物存在的情况下,赤铁矿和针铁矿都显著促进了 PC 介导的降解,这可以归因于微生物供电子能力的增强以及与生成的 Fe(II)相互作用积累的还原态 PC。这项工作为通过 PC 介导的微生物降解在环境中修复酚类污染物的技术设计铺平了可行的道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验