Hernandez-Sanchez Alejandra, Chairez Isaac, Matehuala-Moran Ivan, Alfaro-Ponce Mariel, Molina Arturo
Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Calle del Puente No 222 Col Ejidos de Huipulco, Tlalpan, Mexico City, Mexico.
Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Av. Gral Ramón Corona No 2514 Col Nuevo México, Zapopan, Jalisco, Mexico.
ISA Trans. 2023 Oct;141:276-287. doi: 10.1016/j.isatra.2023.07.004. Epub 2023 Jul 13.
Motion restrictions in robotic devices may introduce complex requirements for any closed-loop control design, mainly when the robot joints must track reference trajectories that force the end-effector to perform planned motions. This study summarizes the comprehensive technical design of an adaptive state feedback controller for multi-link robotic manipulators that consider the effect of position and velocity restrictions on the tracking trajectory control approach. The proposed design is less conservative than other methods because of the explicit inclusion of state restrictions in the control gain dynamics. A logarithm barrier Lyapunov function class supports the design of the adaptive gain for the manipulator. Sufficient conditions based on a Riccati equation simplify the implementation of the adaptive controller with gains depending on the distance between the current state and the restriction sets. Numerical simulations show the advantages of the proposed controller with adaptive gains concerning a similar adaptive controller that does not consider the restrictions and a proportional-integral-derivative form. An implementation for the motion control of a robotic arm is presented to demonstrate the development by implementing the proposed gain, which confirms the suggested improvements enforced by the proposed controller. The performed comparison shows the advantages of the suggested adaptive gain control form, inducing better tracking of reference trajectories and smaller control energy applications.
机器人设备中的运动限制可能会给任何闭环控制设计带来复杂的要求,尤其是当机器人关节必须跟踪使末端执行器执行计划运动的参考轨迹时。本研究总结了一种用于多连杆机器人操纵器的自适应状态反馈控制器的综合技术设计,该设计考虑了位置和速度限制对跟踪轨迹控制方法的影响。由于在控制增益动态中明确包含了状态限制,所提出的设计比其他方法保守性更低。对数障碍李雅普诺夫函数类支持操纵器自适应增益的设计。基于里卡蒂方程的充分条件简化了自适应控制器的实现,其增益取决于当前状态与限制集之间的距离。数值模拟显示了所提出的具有自适应增益的控制器相对于不考虑限制的类似自适应控制器和比例积分微分形式的优势。给出了一个用于机器人手臂运动控制的实现,以通过实现所提出的增益来演示开发过程,这证实了所提出的控制器所带来的改进。所进行的比较显示了所建议的自适应增益控制形式的优势,能更好地跟踪参考轨迹并减少控制能量消耗。