文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估单细胞 RNA-seq 数据的插补方法。

Evaluating imputation methods for single-cell RNA-seq data.

机构信息

School of Intelligence Science and Technology, Key Laboratory of Machine Perception (MOE), Peking University, Beijing, 100871, China.

Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

出版信息

BMC Bioinformatics. 2023 Jul 28;24(1):302. doi: 10.1186/s12859-023-05417-7.


DOI:10.1186/s12859-023-05417-7
PMID:37507764
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10386301/
Abstract

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) enables the high-throughput profiling of gene expression at the single-cell level. However, overwhelming dropouts within data may obscure meaningful biological signals. Various imputation methods have recently been developed to address this problem. Therefore, it is important to perform a systematic evaluation of different imputation algorithms. RESULTS: In this study, we evaluated 11 of the most recent imputation methods on 12 real biological datasets from immunological studies and 4 simulated datasets. The performance of these methods was compared, based on numerical recovery, cell clustering and marker gene analysis. Most of the methods brought some benefits on numerical recovery. To some extent, the performance of imputation methods varied among protocols. In the cell clustering analysis, no method performed consistently well across all datasets. Some methods performed poorly on real datasets but excellent on simulated datasets. Surprisingly and importantly, some methods had a negative effect on cell clustering. In marker gene analysis, some methods identified potentially novel cell subsets. However, not all of the marker genes were successfully imputed in gene expression, suggesting that imputation challenges remain. CONCLUSIONS: In summary, different imputation methods showed different effects on different datasets, suggesting that imputation may have dataset specificity. Our study reveals the benefits and limitations of various imputation methods and provides a data-driven guidance for scRNA-seq data analysis.

摘要

背景:单细胞 RNA 测序(scRNA-seq)能够在单细胞水平上高通量地分析基因表达。然而,数据中大量的缺失值可能会掩盖有意义的生物学信号。最近已经开发了各种插补方法来解决这个问题。因此,对不同的插补算法进行系统评估是很重要的。

结果:在这项研究中,我们在 12 个来自免疫学研究的真实生物数据集和 4 个模拟数据集上评估了 11 种最新的插补方法。根据数值恢复、细胞聚类和标记基因分析,比较了这些方法的性能。大多数方法在数值恢复方面都有一定的优势。在某种程度上,插补方法的性能在不同的方案中有所不同。在细胞聚类分析中,没有一种方法在所有数据集上都表现得一致良好。一些方法在真实数据集上表现不佳,但在模拟数据集上表现出色。令人惊讶的是,一些方法对细胞聚类有负面影响。在标记基因分析中,一些方法鉴定出了潜在的新的细胞亚群。然而,并非所有的标记基因都能成功地在基因表达中进行插补,这表明插补仍然存在挑战。

结论:总之,不同的插补方法对不同的数据集有不同的影响,这表明插补可能具有数据集特异性。我们的研究揭示了各种插补方法的优缺点,并为 scRNA-seq 数据分析提供了数据驱动的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/061c5cb59ffc/12859_2023_5417_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/5d45ad3879d3/12859_2023_5417_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/ea4fc81799c2/12859_2023_5417_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/02690e632134/12859_2023_5417_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/7d8cc6555a68/12859_2023_5417_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/df84dce04b43/12859_2023_5417_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/105df31a42f1/12859_2023_5417_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/5776404d6e2b/12859_2023_5417_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/b29268762062/12859_2023_5417_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/6902f5725db6/12859_2023_5417_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/061c5cb59ffc/12859_2023_5417_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/5d45ad3879d3/12859_2023_5417_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/ea4fc81799c2/12859_2023_5417_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/02690e632134/12859_2023_5417_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/7d8cc6555a68/12859_2023_5417_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/df84dce04b43/12859_2023_5417_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/105df31a42f1/12859_2023_5417_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/5776404d6e2b/12859_2023_5417_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/b29268762062/12859_2023_5417_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/6902f5725db6/12859_2023_5417_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eea/10386301/061c5cb59ffc/12859_2023_5417_Fig10_HTML.jpg

相似文献

[1]
Evaluating imputation methods for single-cell RNA-seq data.

BMC Bioinformatics. 2023-7-28

[2]
SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.

Brief Bioinform. 2023-5-19

[3]
Evaluating the performance of dropout imputation and clustering methods for single-cell RNA sequencing data.

Comput Biol Med. 2022-7

[4]
Accurate and interpretable gene expression imputation on scRNA-seq data using IGSimpute.

Brief Bioinform. 2023-5-19

[5]
Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis.

Brief Bioinform. 2022-7-18

[6]
CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data.

Comput Biol Med. 2023-9

[7]
Collaborative Structure-Preserved Missing Data Imputation for Single-Cell RNA-Seq Clustering.

IEEE/ACM Trans Comput Biol Bioinform. 2024

[8]
GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.

Brief Bioinform. 2022-9-20

[9]
Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data.

Brief Bioinform. 2023-1-19

[10]
A systematic evaluation of single-cell RNA-sequencing imputation methods.

Genome Biol. 2020-8-27

引用本文的文献

[1]
Missing data in single-cell transcriptomes reveals transcriptional shifts.

bioRxiv. 2025-8-21

[2]
scTsI: an effective two-stage imputation method for single-cell RNA-seq data.

Brief Bioinform. 2025-5-1

[3]
An in-depth benchmark framework for evaluating single cell RNA-seq dropout imputation methods and the development of an improved algorithm afMF.

Clin Transl Med. 2025-4

[4]
A graph neural network that combines scRNA-seq and protein-protein interaction data.

Nat Methods. 2025-4

[5]
scNET: learning context-specific gene and cell embeddings by integrating single-cell gene expression data with protein-protein interactions.

Nat Methods. 2025-4

[6]
PhyImpute and UniFracImpute: two imputation approaches incorporating phylogeny information for microbial count data.

Brief Bioinform. 2024-11-22

[7]
Conserved transcription factors coordinate synaptic gene expression through repression.

bioRxiv. 2025-2-11

[8]
scTCA: a hybrid Transformer-CNN architecture for imputation and denoising of scDNA-seq data.

Brief Bioinform. 2024-9-23

[9]
SAE-Impute: imputation for single-cell data via subspace regression and auto-encoders.

BMC Bioinformatics. 2024-10-1

[10]
γδ T-cells in human malignancies: insights from single-cell studies and analytical considerations.

Front Immunol. 2024-8-30

本文引用的文献

[1]
A theoretical framework of immune cell phenotypic classification and discovery.

Front Immunol. 2023

[2]
Benchmarking single-cell RNA-sequencing protocols for cell atlas projects.

Nat Biotechnol. 2020-4-6

[3]
Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity.

Cell. 2019-10-24

[4]
A systematic evaluation of single cell RNA-seq analysis pipelines.

Nat Commun. 2019-10-11

[5]
Exploring single-cell data with deep multitasking neural networks.

Nat Methods. 2019-10-7

[6]
Clonal replacement of tumor-specific T cells following PD-1 blockade.

Nat Med. 2019-7-29

[7]
Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments.

Nat Methods. 2019-5-27

[8]
False signals induced by single-cell imputation.

F1000Res. 2018-11-2

[9]
Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning.

Nat Methods. 2019-3-18

[10]
Lymphocyte innateness defined by transcriptional states reflects a balance between proliferation and effector functions.

Nat Commun. 2019-2-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索