Suppr超能文献

scNET:通过整合单细胞基因表达数据与蛋白质-蛋白质相互作用来学习特定背景下的基因和细胞嵌入

scNET: learning context-specific gene and cell embeddings by integrating single-cell gene expression data with protein-protein interactions.

作者信息

Sheinin Ron, Sharan Roded, Madi Asaf

机构信息

Blavatnik School of Computer Science and AI, Tel Aviv University, Tel Aviv, Israel.

Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

出版信息

Nat Methods. 2025 Apr;22(4):708-716. doi: 10.1038/s41592-025-02627-0. Epub 2025 Mar 17.

Abstract

Recent advances in single-cell RNA sequencing (scRNA-seq) techniques have provided unprecedented insights into the heterogeneity of various tissues. However, gene expression data alone often fails to capture and identify changes in cellular pathways and complexes, as they are more discernible at the protein level. Moreover, analyzing scRNA-seq data presents further challenges due to inherent characteristics such as high noise levels and zero inflation. In this study, we propose an approach to address these limitations by integrating scRNA-seq datasets with a protein-protein interaction network. Our method utilizes a unique dual-view architecture based on graph neural networks, enabling joint representation of gene expression and protein-protein interaction network data. This approach models gene-to-gene relationships under specific biological contexts and refines cell-cell relations using an attention mechanism. Next, through comprehensive evaluations, we demonstrate that scNET better captures gene annotation, pathway characterization and gene-gene relationship identification, while improving cell clustering and pathway analysis across diverse cell types and biological conditions.

摘要

单细胞RNA测序(scRNA-seq)技术的最新进展为深入了解各种组织的异质性提供了前所未有的视角。然而,仅基因表达数据往往无法捕捉和识别细胞通路及复合物中的变化,因为这些变化在蛋白质水平上更易察觉。此外,由于诸如高噪声水平和零膨胀等固有特征,分析scRNA-seq数据带来了更多挑战。在本研究中,我们提出了一种通过将scRNA-seq数据集与蛋白质-蛋白质相互作用网络相结合来解决这些限制的方法。我们的方法利用基于图神经网络的独特双视图架构,实现基因表达和蛋白质-蛋白质相互作用网络数据的联合表示。这种方法在特定生物学背景下对基因与基因之间的关系进行建模,并使用注意力机制优化细胞与细胞之间的关系。接下来,通过全面评估,我们证明scNET能更好地捕捉基因注释、通路特征和基因-基因关系识别,同时在不同细胞类型和生物学条件下改进细胞聚类和通路分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/915a/11978505/7ac2c860c016/41592_2025_2627_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验