Schürger Peter, Engel Volker
Institute of Physical and Theoretical Chemistry, University of Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany.
Entropy (Basel). 2023 Jun 23;25(7):970. doi: 10.3390/e25070970.
We calculate differential Shannon entropies derived from time-dependent coordinate-space and momentum-space probability densities. This is performed for a prototype system of a coupled electron-nuclear motion. Two situations are considered, where one is a Born-Oppenheimer adiabatic dynamics, and the other is a diabatic motion involving strong non-adiabatic transitions. The information about coordinate- and momentum-space dynamics derived from the total and single-particle entropies is discussed and interpreted with the help of analytical models. From the entropies, we derive mutual information, which is a measure for the electron-nuclear correlation. In the adiabatic case, it is found that such correlations are manifested differently in coordinate- and momentum space. For the diabatic dynamics, we show that it is possible to decompose the entropies into state-specific contributions.
我们计算了从随时间变化的坐标空间和动量空间概率密度导出的微分香农熵。这是针对一个耦合电子 - 核运动的原型系统进行的。考虑了两种情况,一种是玻恩 - 奥本海默绝热动力学,另一种是涉及强非绝热跃迁的非绝热运动。借助解析模型讨论并解释了从总熵和单粒子熵导出的关于坐标空间和动量空间动力学的信息。从这些熵中,我们导出了互信息,它是电子 - 核相关性的一种度量。在绝热情况下,发现这种相关性在坐标空间和动量空间中的表现不同。对于非绝热动力学,我们表明可以将熵分解为特定状态的贡献。