Schürger P, Engel V
Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Str. 42, 97074 Würzburg, Germany.
J Chem Theory Comput. 2024 Jun 25;20(12):5012-5021. doi: 10.1021/acs.jctc.4c00245. Epub 2024 Jun 11.
The differential Shannon entropy provides a measure for the localization of a wave function. We regard the vibrational wave packet motion in a curve crossing system and calculate time-dependent entropies. Using a numerical example, we analyze how localization inside diabatic and adiabatic states can be accessed and discuss the differences between these two representations. In order to do so, we extend the usual entropy definition and introduce novel state-selective entropies. These quantities contain information on the form of the nuclear density components on the one hand and on the state population on the other, and it is shown how the contribution of the population can be removed. Having the state-selective entropies at hand, two additional functions derived from these, namely, the conditional entropy and the mutual information, are determined and compared. We find that these quantities relate closely to correlation effects rooted in different electronic properties of the system.
微分香农熵为波函数的局域化提供了一种度量。我们考虑曲线交叉系统中的振动波包运动,并计算随时间变化的熵。通过一个数值例子,我们分析了如何获取绝热态和非绝热态内部的局域化情况,并讨论了这两种表示之间的差异。为此,我们扩展了通常的熵定义,并引入了新的态选择性熵。这些量一方面包含了核密度分量形式的信息,另一方面包含了态布居的信息,并展示了如何去除布居的贡献。有了态选择性熵后,我们确定并比较了由其导出的另外两个函数,即条件熵和互信息。我们发现这些量与源于系统不同电子性质的关联效应密切相关。