Suppr超能文献

基于熵的符号编码方法在金融时间序列分析中的应用

Symbolic Encoding Methods with Entropy-Based Applications to Financial Time Series Analyses.

作者信息

Olbryś Joanna, Komar Natalia

机构信息

Faculty of Computer Science, Bialystok University of Technology, Wiejska 45a, 15-351 Białystok, Poland.

出版信息

Entropy (Basel). 2023 Jun 30;25(7):1009. doi: 10.3390/e25071009.

Abstract

Symbolic encoding of information is the foundation of Shannon's mathematical theory of communication. The concept of the informational efficiency of capital markets is closely related to the issue of information processing by equity market participants. Therefore, the aim of this comprehensive research is to examine and compare a battery of methods based on symbolic coding with thresholds and the modified Shannon entropy in the context of stock market efficiency. As these methods are especially useful in assessing the market efficiency in terms of sequential regularity in financial time series during extreme events, two turbulent periods are analyzed: (1) the COVID-19 pandemic outbreak and (2) the period of war in Ukraine. Selected European equity markets are investigated. The findings of empirical experiments document that the encoding method with two 5% and 95% quantile thresholds seems to be the most effective and precise procedure in recognizing the dynamic patterns in time series of stock market indices. Moreover, the Shannon entropy results obtained with the use of this symbolic encoding method are homogenous for all investigated markets and unambiguously confirm that the market informational efficiency measured by the entropy of index returns decreases during extreme event periods. Therefore, we can recommend the use of this STSA method for financial time series analyses.

摘要

信息的符号编码是香农通信数学理论的基础。资本市场信息效率的概念与股票市场参与者的信息处理问题密切相关。因此,这项综合研究的目的是在股票市场效率的背景下,检验和比较一系列基于带阈值的符号编码和修正香农熵的方法。由于这些方法在评估极端事件期间金融时间序列的序列规律性方面的市场效率特别有用,因此分析了两个动荡时期:(1)新冠疫情爆发期和(2)乌克兰战争时期。对选定的欧洲股票市场进行了调查。实证实验结果表明,采用两个5%和95%分位数阈值的编码方法似乎是识别股票市场指数时间序列动态模式最有效和精确的程序。此外,使用这种符号编码方法获得的香农熵结果在所有调查市场中是同质的,并且明确证实,在极端事件期间,以指数回报熵衡量的市场信息效率会下降。因此,我们可以推荐使用这种STSA方法进行金融时间序列分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/216d/10377789/a208c47255cc/entropy-25-01009-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验