Suppr超能文献

基于图像模糊组合折衷解群决策方法的海上风电场选址优先级决策支持系统

Decision Support System for Prioritization of Offshore Wind Farm Site by Utilizing Picture Fuzzy Combined Compromise Solution Group Decision Method.

作者信息

Rong Yuan, Yu Liying

机构信息

School of Management, Shanghai University, Shanghai 200444, China.

出版信息

Entropy (Basel). 2023 Jul 18;25(7):1081. doi: 10.3390/e25071081.

Abstract

The selection of offshore wind farm site (OWFS) has important strategic significance for vigorously developing offshore new energy and is deemed as a complicated uncertain multicriteria decision-making (MCDM) process. To further promote offshore wind power energy planning and provide decision support, this paper proposes a hybrid picture fuzzy (PF) combined compromise solution (CoCoSo) technique for prioritization of OWFSs. To begin with, a fresh PF similarity measure is proffered to estimate the importance of experts. Next, the novel operational rules for PF numbers based upon the generalized Dombi norms are defined, and four novel generalized Dombi operators are propounded. Afterward, the PF preference selection index (PSI) method and PF stepwise weights assessment ratio analysis (SWARA) model are propounded to identify the objective and subjective weight of criteria, separately. In addition, the enhanced CoCoSo method is proffered via the similarity measure and new operators for ranking OWFSs with PF information. Lastly, the applicability and feasibility of the propounded PF-PSI-SWARA-CoCoSo method are adopted to ascertain the optimal OWFS. The comparison and sensibility investigations are also carried out to validate the robustness and superiority of our methodology. Results manifest that the developed methodology can offer powerful decision support for departments and managers to evaluate and choose the satisfying OWFSs.

摘要

海上风电场选址(OWFS)对于大力发展海上新能源具有重要的战略意义,并且被视为一个复杂的不确定多准则决策(MCDM)过程。为了进一步推动海上风电能源规划并提供决策支持,本文提出了一种混合的模糊图(PF)组合折衷解(CoCoSo)技术,用于对海上风电场选址进行优先级排序。首先,提出了一种新的PF相似度度量方法来估计专家的重要性。其次,基于广义Dombi范数定义了PF数的新运算规则,并提出了四个新的广义Dombi算子。然后,分别提出了PF偏好选择指数(PSI)方法和PF逐步权重评估比率分析(SWARA)模型来确定准则的客观权重和主观权重。此外,通过相似度度量和新算子提出了改进的CoCoSo方法来对具有PF信息的海上风电场选址进行排序。最后,采用所提出的PF-PSI-SWARA-CoCoSo方法的适用性和可行性来确定最优的海上风电场选址。还进行了比较和敏感性研究以验证我们方法的稳健性和优越性。结果表明,所开发的方法可以为部门和管理人员评估和选择满意 的海上风电场选址提供有力的决策支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验