Suppr超能文献

具有极端不平等的财富分配动力学模型:关于其对随机交换稳定性的数值研究

Kinetic Models of Wealth Distribution with Extreme Inequality: Numerical Study of Their Stability against Random Exchanges.

作者信息

Ghosh Asim, Banerjee Suchismita, Goswami Sanchari, Mitra Manipushpak, Chakrabarti Bikas K

机构信息

Department of Physics, Raghunathpur College, Raghunathpur, Purulia 723133, India.

Economic Research Unit, Indian Statistical Institute, Kolkata 700108, India.

出版信息

Entropy (Basel). 2023 Jul 24;25(7):1105. doi: 10.3390/e25071105.

Abstract

In view of some recent reports on global wealth inequality, where a small number (often a handful) of people own more wealth than 50% of the world's population, we explored if kinetic exchange models of markets could ever capture features where a significant fraction of wealth can concentrate in the hands of a few as the market size approaches infinity. One existing example of such a kinetic exchange model is the Chakraborti or Yard-Sale model; in the absence of tax redistribution, etc., all wealth ultimately condenses into the hands of a single individual (for any value of ), and the market dynamics stop. With tax redistribution, etc., steady-state dynamics are shown to have remarkable applicability in many cases in our extremely unequal world. We show that another kinetic exchange model (called the Banerjee model) has intriguing intrinsic dynamics, where only ten rich traders or agents possess about 99.98% of the total wealth in the steady state (without any tax, etc., like external manipulation) for any large value. We will discuss the statistical features of this model using Monte Carlo simulations. We will also demonstrate that if each trader has a non-zero probability of engaging in random exchanges, then these condensations of wealth (e.g., 100% in the hand of one agent in the Chakraborti model, or about 99.98% in the hands of ten agents in the Banerjee model) disappear in the large limit. Moreover, due to the built-in possibility of random exchange dynamics in the earlier proposed Goswami-Sen model, where the exchange probability decreases with the inverse power of the wealth difference between trading pairs, one does not see any wealth condensation phenomena. In this paper, we explore these aspects of statistics of these intriguing models.

摘要

鉴于最近一些关于全球财富不平等的报道,其中少数(通常是极少数)人拥有的财富超过世界人口的50%,我们探讨了市场的动力学交换模型是否能够捕捉到随着市场规模接近无穷大,相当一部分财富会集中在少数人手中的特征。这种动力学交换模型的一个现有例子是恰克拉波蒂(Chakraborti)或庭院销售模型;在没有税收再分配等情况下,所有财富最终都会集中到一个人手中(对于任何值),市场动态就会停止。在有税收再分配等情况下,稳态动态在我们这个极度不平等的世界中的许多情况下都显示出显著的适用性。我们表明,另一个动力学交换模型(称为巴纳吉模型)具有有趣的内在动态,对于任何大的值,在稳态下(没有任何税收等,如外部操纵),只有十个富有的交易者或主体拥有约99.98%的总财富。我们将使用蒙特卡罗模拟来讨论这个模型的统计特征。我们还将证明,如果每个交易者有非零概率参与随机交换,那么这些财富的集中(例如,恰克拉波蒂模型中一个主体手中的100%,或巴纳吉模型中十个主体手中的约99.98%)在大极限情况下会消失。此外,由于早期提出的戈斯瓦米 - 森模型中内置了随机交换动态的可能性,其中交换概率随着交易对之间财富差异的倒数幂而降低,所以不会出现任何财富集中现象。在本文中,我们探讨了这些有趣模型的统计方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ac/10378154/0f18976d584b/entropy-25-01105-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验