Talantsev Evgeny F, Valova-Zaharevskaya Evgeniya G, Deryagina Irina L, Popova Elena N
M. N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18, S. Kovalevskaya St., 620108 Ekaterinburg, Russia.
NANOTECH Centre, Ural Federal University, 19 Mira St., 620002 Ekaterinburg, Russia.
Materials (Basel). 2023 Jul 24;16(14):5185. doi: 10.3390/ma16145185.
The pinning force density, Fp, is one of the main parameters that characterize the resilience of a superconductor to carrying a dissipative-free transport current in an applied magnetic field. Kramer (1973) and Dew-Hughes (1974) proposed a widely used scaling law for this quantity, where one of the parameters is the pinning force density maximum, Fp,max, which represents the maximal performance of a given superconductor in an applied magnetic field at a given temperature. Since the late 1970s to the present, several research groups have reported experimental data on the dependence of Fp,max on the average grain size, d, in NbSn-based conductors. Fp,maxd datasets were analyzed and a scaling law for the dependence Fp,maxd=A×ln1/d+B was proposed. Despite the fact that this scaling law is widely accepted, it has several problems; for instance, according to this law, at T=4.2 K and d≥650 nm, NbSn should lose its superconductivity, which is in striking contrast to experiments. Here, we reanalyzed the full inventory of publicly available Fp,maxd data for NbSn conductors and found that the dependence can be described by the exponential law, in which the characteristic length, δ, varies within a remarkably narrow range of δ=175±13 nm for samples fabricated using different technologies. The interpretation of this result is based on the idea that the in-field supercurrent flows within a thin surface layer (thickness of δ) near grain boundary surfaces (similar to London's law, where the self-field supercurrent flows within a thin surface layer with a thickness of the London penetration depth, λ, and the surface is a superconductor-vacuum surface). An alternative interpretation is that δ represents the characteristic length of the exponential decay flux pinning potential from the dominant defects in NbSn superconductors, which are grain boundaries.
钉扎力密度Fp是表征超导体在施加磁场中承载无耗散传输电流的弹性的主要参数之一。克莱默(1973年)和杜 - 休斯(1974年)针对该量提出了一个广泛使用的标度律,其中一个参数是钉扎力密度最大值Fp,max,它代表给定超导体在给定温度下施加磁场中的最大性能。自20世纪70年代末至今,几个研究小组报告了关于NbSn基导体中Fp,max对平均晶粒尺寸d的依赖性的实验数据。对Fp,max - d数据集进行了分析,并提出了Fp,maxd = A×ln(1/d)+B的依赖性标度律。尽管这个标度律被广泛接受,但它有几个问题;例如,根据这个定律,在T = 4.2 K且d≥650 nm时,NbSn应该失去超导性,这与实验结果形成了鲜明对比。在这里,我们重新分析了NbSn导体公开可用的Fp,max - d数据的完整清单,发现这种依赖性可以用指数定律来描述,其中特征长度δ对于使用不同技术制造的样品在δ = 175±13 nm的非常窄的范围内变化。这个结果的解释基于这样的想法,即场中超电流在晶界表面附近的薄表面层(厚度为δ)内流动(类似于伦敦定律,其中自场超电流在厚度为伦敦穿透深度λ的薄表面层内流动,并且表面是超导体 - 真空表面)。另一种解释是,δ代表NbSn超导体中主要缺陷(即晶界)的指数衰减磁通钉扎势的特征长度。