Suppr超能文献

辅酶Q生物合成途径中Coq9的特性研究

Characterization of Coq9 in the CoQ Biosynthetic Pathway.

作者信息

Hu Mei, Jiang Yan, Xu Jing-Jing

机构信息

Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.

Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.

出版信息

Metabolites. 2023 Jun 30;13(7):813. doi: 10.3390/metabo13070813.

Abstract

Coenzyme Q, also known as ubiquinone, is a fat-soluble isoprene quinone that serves as a cofactor for numerous enzymes across all domains of life. However, the biosynthetic pathway for this important molecule in plants has been examined in only a limited number of studies. In yeast and mammals, Coq9, an isoprenoid-lipid-binding protein, is essential for CoQ biosynthesis. Previous studies showed that failed to complement the fission yeast null mutant, and its function in plants remains unknown. In this study, we demonstrated that expression of rescued the growth of a yeast temperature-sensitive mutant and increased CoQ content. Phylogenetic analysis revealed that Coq9 is widely present in green plants. Green fluorescent protein (GFP) fusion experiments showed that Coq9 is targeted to mitochondria. Disruption of the gene in results in lower amounts of CoQ. Our work suggests that plant Coq9 is required for efficient CoQ biosynthesis. These findings provide new insights into the evolution of CoQ biosynthesis in plants. The identification of Coq9 as a key player in CoQ biosynthesis in plants opens up new avenues for understanding the regulation of this important metabolic pathway.

摘要

辅酶Q,也称为泛醌,是一种脂溶性异戊二烯醌,在所有生命域中作为多种酶的辅助因子。然而,植物中这种重要分子的生物合成途径仅在有限的一些研究中得到过考察。在酵母和哺乳动物中,Coq9,一种类异戊二烯脂质结合蛋白,对辅酶Q的生物合成至关重要。先前的研究表明,其无法补充裂殖酵母的缺失突变体,其在植物中的功能仍然未知。在本研究中,我们证明了Coq9的表达挽救了酵母温度敏感突变体的生长并增加了辅酶Q的含量。系统发育分析表明Coq9广泛存在于绿色植物中。绿色荧光蛋白(GFP)融合实验表明Coq9定位于线粒体。破坏拟南芥中的Coq9基因会导致辅酶Q含量降低。我们的工作表明植物Coq9是高效辅酶Q生物合成所必需的。这些发现为植物中辅酶Q生物合成的进化提供了新的见解。将Coq9鉴定为植物辅酶Q生物合成中的关键参与者,为理解这一重要代谢途径的调控开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e5a/10385794/e338d427c987/metabolites-13-00813-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验