Suppr超能文献

基于中粒度数据融合与指纹区分析的赤霉病小麦 DON 级缺陷分类。

Mid-Level Data Fusion Combined with the Fingerprint Region for Classification DON Levels Defect of Fusarium Head Blight Wheat.

机构信息

College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China.

College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.

出版信息

Sensors (Basel). 2023 Jul 22;23(14):6600. doi: 10.3390/s23146600.

Abstract

In this study, a method of mid-level data fusion with the fingerprint region was proposed, which was combined with the characteristic wavelengths that contain fingerprint information in NIR and FT-MIR spectra to detect the DON level in FHB wheat during wheat processing. NIR and FT-MIR raw spectroscopy data on normal wheat and FHB wheat were obtained in the experiment. MSC was used for pretreatment, and characteristic wavelengths were extracted by CARS, MGS and XLW. The variables that can effectively reflect fingerprint information were retained to build the mid-level data fusion matrix. LS-SVM and PLS-DA were applied to investigate the performance of the single spectroscopic model, mid-level data fusion model and mid-level data fusion with fingerprint information model, respectively. The experimental results show that mid-level data fusion with a fingerprint information strategy based on fused NIR and FT-MIR spectra represents an effective method for the classification of DON levels in FHB wheat samples.

摘要

在本研究中,提出了一种基于中级别数据融合的方法,该方法结合了近红外和傅里叶变换中包含指纹信息的特征波长,以检测小麦加工过程中 FHB 小麦中的 DON 水平。实验中获得了正常小麦和 FHB 小麦的近红外和傅里叶变换中红外原始光谱数据。采用 MSC 进行预处理,并通过 CARS、MGS 和 XLW 提取特征波长。保留能够有效反映指纹信息的变量,构建中级别数据融合矩阵。应用 LS-SVM 和 PLS-DA 分别研究了单一光谱模型、中级别数据融合模型和中级别数据融合与指纹信息模型的性能。实验结果表明,基于融合近红外和傅里叶变换中红外光谱的中级别数据融合与指纹信息策略是一种有效的 FHB 小麦样本 DON 水平分类方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e0/10384187/9868ba4de758/sensors-23-06600-g001a.jpg

相似文献

2
Deoxynivalenol Detoxification in Transgenic Wheat Confers Resistance to Fusarium Head Blight and Crown Rot Diseases.
Mol Plant Microbe Interact. 2019 May;32(5):583-592. doi: 10.1094/MPMI-06-18-0155-R. Epub 2019 Mar 29.
4
Fusarium graminearum infection and deoxynivalenol concentrations during development of wheat spikes.
Phytopathology. 2013 May;103(5):460-71. doi: 10.1094/PHYTO-03-12-0054-R.
5
Profitability of Integrated Management of Fusarium Head Blight in North Carolina Winter Wheat.
Phytopathology. 2016 Aug;106(8):814-23. doi: 10.1094/PHYTO-10-15-0263-R. Epub 2016 Jun 20.
9
NX Trichothecenes Are Required for Infection of Wheat.
Mol Plant Microbe Interact. 2023 May;36(5):294-304. doi: 10.1094/MPMI-08-22-0164-R. Epub 2023 May 17.
10
Machine Learning Analysis of Hyperspectral Images of Damaged Wheat Kernels.
Sensors (Basel). 2023 Mar 28;23(7):3523. doi: 10.3390/s23073523.

引用本文的文献

本文引用的文献

1
Effects of fine grinding on mid-infrared spectroscopic analysis of plant leaf nutrient content.
Sci Rep. 2023 Apr 18;13(1):6314. doi: 10.1038/s41598-023-33558-5.
2
Spectroscopic technologies and data fusion: Applications for the dairy industry.
Front Nutr. 2023 Jan 11;9:1074688. doi: 10.3389/fnut.2022.1074688. eCollection 2022.
3
Rapid detection of hepatitis B virus DNA level based on interval-point data fusion of infrared spectra.
J Biophotonics. 2023 Mar;16(3):e202200251. doi: 10.1002/jbio.202200251. Epub 2022 Oct 11.
4
Challenges and Opportunities of Implementing Data Fusion in Process Analytical Technology-A Review.
Molecules. 2022 Jul 28;27(15):4846. doi: 10.3390/molecules27154846.
6
Determination of 10-Hydroxy-2-Decenoic Acid of Royal Jelly Using Near-Infrared Spectroscopy Combined with Chemometrics.
J Food Sci. 2019 Sep;84(9):2458-2466. doi: 10.1111/1750-3841.14748. Epub 2019 Sep 4.
7
Genetic analysis of Fourier transform infrared milk spectra in Danish Holstein and Danish Jersey.
J Dairy Sci. 2019 Jan;102(1):503-510. doi: 10.3168/jds.2018-14464. Epub 2018 Oct 19.
9
Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition.
Spectrochim Acta A Mol Biomol Spectrosc. 2018 Oct 5;203:308-314. doi: 10.1016/j.saa.2018.05.123. Epub 2018 May 30.
10
Geographic identification of Boletus mushrooms by data fusion of FT-IR and UV spectroscopies combined with multivariate statistical analysis.
Spectrochim Acta A Mol Biomol Spectrosc. 2018 Jun 5;198:257-263. doi: 10.1016/j.saa.2018.03.018. Epub 2018 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验