Ríos-Reina Rocío, Azcarate Silvana M, Camiña José M, Goicoechea Héctor C
Área de Nutrición y Bromatología, Fac. Farmacia, Univ. Sevilla, C/P. García González No. 2, E-41012, Sevilla, Spain.
Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa-CONICET, Instituto de Ciencias de La Tierra y Ambientales de La Pampa (INCITAP), Av. Uruguay 151, 6300, Santa Rosa, La Pampa, Argentina.
Anal Chim Acta. 2020 Aug 22;1126:52-62. doi: 10.1016/j.aca.2020.06.014. Epub 2020 Jun 19.
Capillary electrophoresis with diode array detection (CE-DAD) and multidimensional fluorescence spectroscopy (EEM) second-order data were fused and chemometrically processed for geographical and grape variety classification of wines. Multi-levels data fusion strategies on three-way data were evaluated and compared revealing their advantages/disadvantages in the classification context. Straightforward approaches based on a series of data preprocessing and feature extraction steps were developed for each studied level. Partial least square discriminant analysis (PLS-DA) and its multi-way extension (NPLS-DA) were applied to CE-DAD, EEM and fused data matrices structured as two-way and three-way arrays, respectively. Classification results achieved on each model were evaluated through global indices such as average sensitivity non-error rate and average precision. Different degrees of improvement were observed comparing the fused matrix results with those obtained using a single one, clear benefits have been demonstrated when level of data fusion increases, achieving with the high-level strategy the best classification results.
采用二极管阵列检测的毛细管电泳(CE-DAD)和多维荧光光谱(EEM)二阶数据进行融合,并进行化学计量学处理,用于葡萄酒的产地和葡萄品种分类。评估并比较了三向数据的多级数据融合策略,揭示了它们在分类背景下的优缺点。针对每个研究级别,开发了基于一系列数据预处理和特征提取步骤的直接方法。偏最小二乘判别分析(PLS-DA)及其多向扩展(NPLS-DA)分别应用于结构为双向和三向阵列的CE-DAD、EEM和融合数据矩阵。通过平均灵敏度无错误率和平均精度等全局指标评估每个模型的分类结果。将融合矩阵结果与使用单个矩阵获得的结果进行比较,观察到不同程度的改进,当数据融合级别增加时,已证明有明显益处,通过高级策略获得了最佳分类结果。