Frankberg Erkka J, Lambai Aloshious, Zhang Jiahui, Kalikka Janne, Khakalo Sergei, Paladino Boris, Cabrioli Mattia, Mathews Nidhin G, Salminen Turkka, Hokka Mikko, Akola Jaakko, Kuronen Antti, Levänen Erkki, Di Fonzo Fabio, Mohanty Gaurav
Materials Science and Environmental Engineering Unit, Tampere University, Korkeakoulunkatu 6, Tampere, 33720, Finland.
Center for Nano Science and Technology CNST@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, Milano, 20133, Italy.
Adv Mater. 2023 Nov;35(46):e2303142. doi: 10.1002/adma.202303142. Epub 2023 Oct 15.
Oxide glasses are an elementary group of materials in modern society, but brittleness limits their wider usability at room temperature. As an exception to the rule, amorphous aluminum oxide (a-Al O ) is a rare diatomic glassy material exhibiting significant nanoscale plasticity at room temperature. Here, it is shown experimentally that the room temperature plasticity of a-Al O extends to the microscale and high strain rates using in situ micropillar compression. All tested a-Al O micropillars deform without fracture at up to 50% strain via a combined mechanism of viscous creep and shear band slip propagation. Large-scale molecular dynamics simulations align with the main experimental observations and verify the plasticity mechanism at the atomic scale. The experimental strain rates reach magnitudes typical for impact loading scenarios, such as hammer forging, with strain rates up to the order of 1 000 s , and the total a-Al O sample volume exhibiting significant low-temperature plasticity without fracture is expanded by 5 orders of magnitude from previous observations. The discovery is consistent with the theoretical prediction that the plasticity observed in a-Al O can extend to macroscopic bulk scale and suggests that amorphous oxides show significant potential to be used as light, high-strength, and damage-tolerant engineering materials.
氧化物玻璃是现代社会中一类基本的材料,但脆性限制了它们在室温下的更广泛应用。作为一个例外,非晶态氧化铝(a-Al₂O₃)是一种罕见的双原子玻璃材料,在室温下表现出显著的纳米级可塑性。在此,通过原位微柱压缩实验表明,a-Al₂O₃的室温可塑性扩展到了微米尺度和高应变速率。所有测试的a-Al₂O₃微柱在高达50%应变时通过粘性蠕变和剪切带滑移传播的联合机制变形而不发生断裂。大规模分子动力学模拟与主要实验观察结果一致,并在原子尺度上验证了可塑性机制。实验应变速率达到了冲击加载场景(如锤锻)的典型量级,应变速率高达1000 s⁻¹,并且表现出显著低温可塑性且不发生断裂的a-Al₂O₃样品总体积比之前的观察结果扩大了5个数量级。这一发现与理论预测一致,即a-Al₂O₃中观察到的可塑性可以扩展到宏观体尺度,并表明非晶态氧化物作为轻质、高强度和耐损伤工程材料具有巨大潜力。