Suppr超能文献

人工智能与机器学习(深度学习)在耳鼻咽喉科学中的应用:基于VOSviewer和CiteSpace的文献计量分析

Artificial Intelligence and Machine (Deep) Learning in Otorhinolaryngology: A Bibliometric Analysis Based on VOSviewer and CiteSpace.

作者信息

Ma Tianyu, Wu Qilong, Jiang Li, Zeng Xiaoyun, Wang Yuyao, Yuan Yi, Wang Bingxuan, Zhang Tianhong

机构信息

Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.

出版信息

Ear Nose Throat J. 2023 Jul 29:1455613231185074. doi: 10.1177/01455613231185074.

Abstract

BACKGROUND

Otorhinolaryngology diseases are well suited for artificial intelligence (AI)-based interpretation. The use of AI, particularly AI based on deep learning (DL), in the treatment of human diseases is becoming more and more popular. However, there are few bibliometric analyses that have systematically studied this field.

OBJECTIVE

The objective of this study was to visualize the research hot spots and trends of AI and DL in ENT diseases through bibliometric analysis to help researchers understand the future development of basic and clinical research.

METHODS

In all, 232 articles and reviews were retrieved from The Web of Science Core Collection. Using CiteSpace and VOSviewer software, countries, institutions, authors, references, and keywords in the field were visualized and examined.

RESULTS

The majority of these papers came from 44 nations and 498 institutions, with China and the United States leading the way. Common diseases used by AI in ENT include otosclerosis, otitis media, nasal polyps, sinusitis, and so on. In the early years, research focused on the analysis of hearing and articulation disorders, and in recent years mainly on the diagnosis, localization, and grading of diseases.

CONCLUSIONS

The analysis shows the periodical hot spots and development direction of AI and DL application in ENT diseases from the time dimension. The diagnosis and prognosis of otolaryngology diseases and the analysis of otolaryngology endoscopic images have been the focus of current research and the development trend of future.

摘要

背景

耳鼻咽喉科疾病非常适合基于人工智能(AI)的解读。AI,尤其是基于深度学习(DL)的AI,在人类疾病治疗中的应用越来越广泛。然而,很少有文献计量分析系统地研究这一领域。

目的

本研究的目的是通过文献计量分析可视化AI和DL在耳鼻喉科疾病中的研究热点和趋势,以帮助研究人员了解基础和临床研究的未来发展。

方法

总共从科学网核心合集检索到232篇文章和综述。使用CiteSpace和VOSviewer软件,对该领域的国家、机构、作者、参考文献和关键词进行可视化和分析。

结果

这些论文大多来自44个国家和498个机构,中国和美国领先。AI在耳鼻喉科中应用的常见疾病包括耳硬化症、中耳炎、鼻息肉、鼻窦炎等。早期,研究集中在听力和发音障碍分析,近年来主要集中在疾病的诊断、定位和分级。

结论

该分析从时间维度展示了AI和DL在耳鼻喉科疾病中应用的阶段性热点和发展方向。耳鼻咽喉科疾病的诊断和预后以及耳鼻咽喉科内镜图像分析一直是当前研究的重点和未来的发展趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验