Suppr超能文献

人工智能在听力学中的应用:现状与未来方向的范围综述。

Artificial Intelligence in Audiology: A Scoping Review of Current Applications and Future Directions.

机构信息

Maxillofacial Surgery Unit, Department of Medical Biotechnology, S. Maria alle Scotte University Hospital of Siena, 53100 Siena, Italy.

Phoniatris and Audiology Unit, Department of Neuroscience DNS, University of Padova, 33100 Treviso, Italy.

出版信息

Sensors (Basel). 2024 Nov 6;24(22):7126. doi: 10.3390/s24227126.

Abstract

The integration of artificial intelligence (AI) into medical disciplines is rapidly transforming healthcare delivery, with audiology being no exception. By synthesizing the existing literature, this review seeks to inform clinicians, researchers, and policymakers about the potential and challenges of integrating AI into audiological practice. The PubMed, Cochrane, and Google Scholar databases were searched for articles published in English from 1990 to 2024 with the following query: "(audiology) AND ("artificial intelligence" OR "machine learning" OR "deep learning")". The PRISMA extension for scoping reviews (PRISMA-ScR) was followed. The database research yielded 1359 results, and the selection process led to the inclusion of 104 manuscripts. The integration of AI in audiology has evolved significantly over the succeeding decades, with 87.5% of manuscripts published in the last 4 years. Most types of AI were consistently used for specific purposes, such as logistic regression and other statistical machine learning tools (e.g., support vector machine, multilayer perceptron, random forest, deep belief network, decision tree, k-nearest neighbor, or LASSO) for automated audiometry and clinical predictions; convolutional neural networks for radiological image analysis; and large language models for automatic generation of diagnostic reports. Despite the advances in AI technologies, different ethical and professional challenges are still present, underscoring the need for larger, more diverse data collection and bioethics studies in the field of audiology.

摘要

人工智能(AI)与医学学科的融合正在迅速改变医疗保健的提供方式,听力学也不例外。通过综合现有文献,本综述旨在向临床医生、研究人员和政策制定者介绍将 AI 融入听力学实践的潜力和挑战。我们在 PubMed、Cochrane 和 Google Scholar 数据库中以以下查询搜索了 1990 年至 2024 年发表的英文文章:“(听力学)和(人工智能或机器学习或深度学习)”。我们遵循了用于范围综述的 PRISMA 扩展(PRISMA-ScR)。数据库研究产生了 1359 项结果,经过选择过程,纳入了 104 篇手稿。在随后的几十年中,AI 在听力学中的整合有了显著发展,其中 87.5%的手稿是在过去 4 年发表的。大多数类型的 AI 都被一致用于特定用途,例如逻辑回归和其他统计机器学习工具(例如支持向量机、多层感知机、随机森林、深度置信网络、决策树、k-最近邻或 LASSO)用于自动听力测试和临床预测;卷积神经网络用于放射影像分析;以及大型语言模型用于自动生成诊断报告。尽管 AI 技术取得了进展,但仍存在不同的伦理和专业挑战,这突显了在听力学领域需要更大、更多样化的数据收集和生物伦理学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/11598364/34381e944157/sensors-24-07126-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验