Xing Bing, Wang Ting, Han Xiaobo, Zhang Kun, Li Benxia
School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
J Colloid Interface Sci. 2023 Nov 15;650(Pt B):1862-1870. doi: 10.1016/j.jcis.2023.07.144. Epub 2023 Jul 24.
The rational integration of semiconductor quantum dots (QDs) with anatase TiO nanostructures is a promising strategy to develop efficient photocatalysts. Herein, BiSQD/TiO photocatalyst was constructed by controllably depositing BiS QDs on flower-like TiO nanostructures and used for the photocatalytic redox-coupling reaction of H evolution and oxidative transformation of benzyl alcohol. The abundant amino groups in TiO nanostructures served as the anchoring sites for uniform growth of BiS QDs. The anchoring of BiS QDs onto TiO nanostructures not only enhanced the photoabsorption ability and the photogenerated charge separation efficiency but also afforded powerful photogenerated charge carriers and abundant active sites for the photocatalytic reaction. As a result, the BiSQD/TiO photocatalyst exhibited a favorable performance in the redox-coupling reaction, providing the high production rates of H up to 4.75 mmol·g·h and benzaldehyde up to 6.12 mmol·g·h, respectively, as well as an excellent stability in the long-term photocatalytic reaction. Meanwhile, a trace amount of water in the reaction system could act as a promoter to accelerate the photocatalytic redox-coupling reaction. The photocatalytic mechanism following S-scheme heterojunction was proposed according to the systematic characterizations and experimental results. This work offers some insight into the rational construction of efficient and cost-effective photocatalysts for the conversion of solar to chemical energy.
将半导体量子点(QDs)与锐钛矿型TiO纳米结构进行合理整合是开发高效光催化剂的一种很有前景的策略。在此,通过将BiS QDs可控地沉积在花状TiO纳米结构上构建了BiSQD/TiO光催化剂,并将其用于析氢的光催化氧化还原偶联反应和苯甲醇的氧化转化反应。TiO纳米结构中丰富的氨基作为BiS QDs均匀生长的锚定位点。BiS QDs锚定在TiO纳米结构上不仅增强了光吸收能力和光生电荷分离效率,还为光催化反应提供了强大的光生电荷载流子和丰富的活性位点。结果,BiSQD/TiO光催化剂在氧化还原偶联反应中表现出良好的性能,分别提供高达4.75 mmol·g⁻¹·h⁻¹的H₂产率和高达6.12 mmol·g⁻¹·h⁻¹的苯甲醛产率,以及在长期光催化反应中具有优异的稳定性。同时,反应体系中的微量水可以作为促进剂加速光催化氧化还原偶联反应。根据系统的表征和实验结果,提出了遵循S型异质结的光催化机理。这项工作为合理构建用于太阳能向化学能转化的高效且经济高效的光催化剂提供了一些见解。