Suppr超能文献

青春期时长时间、特异性的空间训练可逆转脆性 X 综合征小鼠模型成年海马网络损伤。

Prolonged and specific spatial training during adolescence reverses adult hippocampal network impairments in a mouse model of fragile X syndrome.

机构信息

Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Germany.

Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Germany; Helmholtz Center for Infection Research, Research group Neuroinflammation and Neurodegeneration, Braunschweig, Germany.

出版信息

Neurobiol Dis. 2023 Sep;185:106240. doi: 10.1016/j.nbd.2023.106240. Epub 2023 Jul 27.

Abstract

The fragile X syndrome (FXS) is the leading monogenetic cause of cognitive impairment and autism. A hallmark of FXS in patients and the FXS mouse model (Fmr1 KO) is an overabundance of immature appearing dendritic spines in the cortex and hippocampus which is associated with behavioral deficits. Spine analysis in the different hippocampal subregions and at different developmental stages revealed that in adult mice, hippocampal spine pathology occurs specifically in the CA3 subregion, which plays a pivotal role in pattern completion processes important for efficient memory recall from parts of the initial memory stimulus. In line with this synaptic defect we document an impairment in memory recall during partially cued reference memory test in the Morris water maze task. This is accompanied by impaired recruitment of engram cells as well as impaired spine structural plasticity in the CA3 region. In order to promote hippocampal network development adolescent mice were either raised in an enriched environment or subjected to specific hippocampus-dependent spatial training. Intriguingly, only specific spatial training alleviated the cognitive symptoms and the spine phenotype shown in adult Fmr1 KO mice suggesting that specific stimulation of hippocampal networks during development might be used in the future as a therapeutic strategy.

摘要

脆性 X 综合征 (FXS) 是认知障碍和自闭症的主要单基因病因。FXS 患者和 FXS 小鼠模型 (Fmr1 KO) 的一个显著特征是皮质和海马体中幼稚形态的树突棘过度增多,这与行为缺陷有关。对不同海马体亚区和不同发育阶段的棘突分析表明,在成年小鼠中,海马体棘突病理仅发生在 CA3 亚区,CA3 亚区在模式完成过程中起着关键作用,对于从初始记忆刺激的部分高效回忆记忆至关重要。与这种突触缺陷一致,我们在 Morris 水迷宫任务的部分线索参考记忆测试中记录到记忆回忆受损。这伴随着情景记忆细胞募集受损以及 CA3 区棘突结构可塑性受损。为了促进海马体网络发育,青春期小鼠被置于丰富环境中或接受特定的海马体依赖性空间训练。有趣的是,只有特定的空间训练可以减轻成年 Fmr1 KO 小鼠的认知症状和棘突表型,这表明在发育过程中对海马体网络的特定刺激可能被用作未来的治疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验