School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China.
Beijing Graphene Institute, Beijing 100095, China.
Bioresour Technol. 2023 Nov;387:129586. doi: 10.1016/j.biortech.2023.129586. Epub 2023 Jul 28.
Anaerobic digestion has become a global practice for valorizing food waste, but the recycling of the digestate (FWD) remains challenging. This study aimed to address this issue by utilizing FWD as a low-cost feedstock for Ca-rich biochar production. The results demonstrated that biochar pyrolyzed at 900 °C exhibited impressive As(V) adsorption performance without any modifications. Kinetic analysis suggested As(V) was chemisorbed onto CDBC9, while isotherm data conformed well to Langmuir model, indicating monolayer adsorption with a maximum capacity of 76.764 mg/g. Further analysis using response surface methodology revealed that pH value and adsorbent dosage were significant influencing factors, and density functional theory (DFT) calculation visualized the formation of ionic bonds between HAsO and CaO(110) and Ca(OH)(101) surfaces. This work demonstrated the potential of using FWD for producing Ca-rich biochar, providing an effective solution for As(V) removal and highlighting the importance of waste material utilization in sustainable environmental remediation.
厌氧消化已成为一种全球性的方法,用于实现食品废物的增值利用,但消化物(FWD)的再循环仍然具有挑战性。本研究旨在通过利用 FWD 作为富含钙的生物炭生产的低成本原料来解决这个问题。结果表明,未经任何修饰,在 900°C 下热解的生物炭对 As(V)表现出令人印象深刻的吸附性能。动力学分析表明,As(V)被化学吸附到 CDBC9 上,而等温线数据符合 Langmuir 模型,表明单层吸附的最大容量为 76.764mg/g。进一步使用响应面法分析表明,pH 值和吸附剂用量是重要的影响因素,密度泛函理论(DFT)计算可视化了 HAsO 和 CaO(110) 和 Ca(OH)(101)表面之间形成离子键。这项工作展示了使用 FWD 生产富含钙的生物炭的潜力,为去除 As(V)提供了有效的解决方案,并强调了在可持续环境修复中利用废物的重要性。