Suppr超能文献

Interstitial compliance and transcapillary fluid balance in renal hypertensive rats.

作者信息

Wiig H, Reed R K

出版信息

Acta Physiol Scand. 1986 Jul;127(3):407-17. doi: 10.1111/j.1748-1716.1986.tb07921.x.

Abstract

Local interstitial fluid volume (IFV) and pressure (IFP) were used to estimate interstitial compliance (= delta IFV/delta IFP) in skin and skeletal muscle of normotensive (NT) and renal hypertensive rats (HT). The IFV was measured as the extravascular 51Cr-EDTA space, and IFP with micropipettes (tip diameter 2-4 microns) connected to a servocontrolled counter-pressure system. After control measurements, overhydration was induced by infusion of saline, 10% of body weight i.v. with or without venous stasis. Alternatively, dehydration was induced by peritoneal dialysis with 20% glucose or by furosemide infusion with or without 24 h fluid deprivation. Control ECV averaged 24.94 and 24.73 ml per 100 g in NT and HT, respectively (P greater than 0.05). Control PV averaged 2.81 and 3.28 ml per 100 g in NT and HT, respectively (P = 0.061), and control IFP was more positive in HT than in NT: 0.4 mmHg in skin (P less than 0.05) and 0.2 mmHg in skeletal muscle (P greater than 0.05). Dehydration changed PV significantly more in HT than in NT (P less than 0.05). The interstitial volume-pressure curve was linear in dehydration and the initial part of overhydration but gradually levelled off, and the maximal rise in IFP was 1-1.5 mmHg in skin and muscle. Interstitial compliance was calculated from the dehydration part of the volume-pressure curve and was in NT 14% per mmHg both in skin and skeletal muscle. In HT, compliance during dehydration was 10.2 and 20.7% reduction in IFV per mmHg fall in IFP in skin and muscle, respectively, not significantly different from corresponding values in NT (P greater than 0.05). We conclude that HT had unaltered ECV and a tendency to higher PV, and that interstitial compliance was not significantly different in normotensive and hypertensive rats.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验