Suppr超能文献

开发雨水生物滞留系统的氮去除模型。

Developing nitrogen removal models for stormwater bioretention systems.

机构信息

Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, United States.

Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA, 22904, United States.

出版信息

Water Res. 2023 Sep 1;243:120381. doi: 10.1016/j.watres.2023.120381. Epub 2023 Jul 21.

Abstract

Bioretention systems have the potential of simultaneous runoff volume reduction and nitrogen removal. Internal water storage (IWS) layers and real-time control (RTC) strategies may further improve performance of bioretention systems. However, optimizing the design of these systems is limited by the lack of effective models to simulate nitrogen transformations under the influences of IWS design and environment conditions including soil moisture and temperature. In this study, nitrogen removal models (NRMs) are developed with two complexity levels of nitrogen cycling: the Single Nitrogen Pool (SP) models and the more complex 3 Nitrogen Pool (3P) models. The 0-order kinetics, 1 order kinetics, and the Michaelis-Menten equations are applied to both SP and 3P models, creating six different NRMs. The Storm Water Management Model (SWMM), in combination with each NRM, is calibrated and validated with a lab dataset. Results show that 0-order kinetics are not suitable in simulating nitrogen removal or transformations in bioretention systems, while 1 order kinetics and Michaelis-Menten equation models have similar performances. The best performing NRM (referred to as 3P-m) can accurately predict nitrogen event mean concentrations in bioretention effluent for 20% more events when compared to SWMM. When only calibrated with soil moisture conditions in bioretention systems without internal storage layers, 3P-m was sufficiently adaptable to predict cumulative nitrogen mass removal rates from systems with IWS or RTC rules with less than ±7% absolute error, while the absolute error from SWMM prediction can reach -23%. In general, 3P models provide higher prediction accuracy and improved time series of biochemical reaction rates, while SP models improve prediction accuracy with less required user input for initial conditions.

摘要

生物滞留系统具有同时减少径流量和去除氮的潜力。内部蓄水层(IWS)和实时控制(RTC)策略可以进一步提高生物滞留系统的性能。然而,由于缺乏有效的模型来模拟 IWS 设计和环境条件(包括土壤湿度和温度)对氮转化的影响,这些系统的设计优化受到限制。在本研究中,开发了两种氮循环复杂程度的氮去除模型(NRMs):单氮池(SP)模型和更复杂的 3 氮池(3P)模型。零级动力学、一级动力学和米氏方程都应用于 SP 和 3P 模型,创建了六个不同的 NRMs。SWMM 与每个 NRM 结合,使用实验室数据集进行校准和验证。结果表明,零级动力学不适用于模拟生物滞留系统中的氮去除或转化,而一级动力学和米氏方程模型具有相似的性能。表现最佳的 NRM(称为 3P-m)在与 SWMM 相比时,能够更准确地预测生物滞留系统中 20%以上事件的氮事件平均浓度。当仅根据没有内部储水层的生物滞留系统中的土壤湿度条件进行校准,3P-m 足够适应预测具有 IWS 或 RTC 规则的系统的累积氮去除率,误差小于±7%,而 SWMM 预测的误差可达到-23%。总体而言,3P 模型提供了更高的预测精度和改进的生化反应速率时间序列,而 SP 模型则通过减少初始条件所需的用户输入来提高预测精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验