Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada.
Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts.
Int J Radiat Oncol Biol Phys. 2024 Jan 1;118(1):74-84. doi: 10.1016/j.ijrobp.2023.07.029. Epub 2023 Jul 29.
The delineation of dominant intraprostatic gross tumor volumes (GTVs) on multiparametric magnetic resonance imaging (mpMRI) can be subject to interobserver variability. We evaluated whether deep learning artificial intelligence (AI)-segmented GTVs can provide a similar degree of intraprostatic boosting with external beam radiation therapy (EBRT) as radiation oncologist (RO)-delineated GTVs.
We identified 124 patients who underwent mpMRI followed by EBRT between 2010 and 2013. A reference GTV was delineated by an RO and approved by a board-certified radiologist. We trained an AI algorithm for GTV delineation on 89 patients, and tested the algorithm on 35 patients, each with at least 1 PI-RADS (Prostate Imaging Reporting and Data System) 4 or 5 lesion (46 total lesions). We then asked 5 additional ROs to independently delineate GTVs on the test set. We compared lesion detectability and geometric accuracy of the GTVs from AI and 5 ROs against the reference GTV. Then, we generated EBRT plans (77 Gy prostate) that boosted each observer-specific GTV to 95 Gy. We compared reference GTV dose (D98%) across observers using a mixed-effects model.
On a lesion level, AI GTV exhibited a sensitivity of 82.6% and positive predictive value of 86.4%. Respective ranges among the 5 RO GTVs were 84.8% to 95.7% and 95.1% to 100.0%. Among 30 GTVs mutually identified by all observers, no significant differences in Dice coefficient were detected between AI and any of the 5 ROs. Across all patients, only 2 of 5 ROs had a reference GTV D98% that significantly differed from that of AI by 2.56 Gy (P = .02) and 3.20 Gy (P = .003). The presence of false-negative (-5.97 Gy; P < .001) but not false-positive (P = .24) lesions was associated with reference GTV D98%.
AI-segmented GTVs demonstrate potential for intraprostatic boosting, although the degree of boosting may be adversely affected by false-negative lesions. Prospective review of AI-segmented GTVs remains essential.
在多参数磁共振成像(mpMRI)上勾画优势前列腺内大体肿瘤体积(GTV)可能存在观察者间的变异性。我们评估了深度学习人工智能(AI)-分割的 GTV 是否可以为外束放射治疗(EBRT)提供与放射肿瘤学家(RO)勾画的 GTV 相似程度的前列腺内增敏。
我们确定了 124 名于 2010 年至 2013 年期间接受 mpMRI 后行 EBRT 的患者。RO 勾画参考 GTV,并由经过董事会认证的放射科医师批准。我们在 89 名患者上训练了一个用于 GTV 勾画的 AI 算法,并在 35 名患者上进行了测试,每个患者至少有 1 个 PI-RADS(前列腺成像报告和数据系统)4 或 5 级病变(共 46 个病变)。然后,我们请 5 名额外的 RO 独立勾画测试集上的 GTV。我们比较了 AI 和 5 名 RO 的 GTV 的病变检出率和几何准确性与参考 GTV 的比较。然后,我们生成了将每个观察者特定的 GTV 提升至 95Gy 的 EBRT 计划(77Gy 前列腺)。我们使用混合效应模型比较了观察者之间的参考 GTV 剂量(D98%)。
在病变水平上,AI GTV 的灵敏度为 82.6%,阳性预测值为 86.4%。5 名 RO GTV 的相应范围为 84.8%至 95.7%和 95.1%至 100.0%。在所有观察者共同识别的 30 个 GTV 中,AI 与 5 名 RO 之间的 Dice 系数没有显著差异。在所有患者中,只有 2 名 RO 的参考 GTV D98%与 AI 相差 2.56Gy(P=0.02)和 3.20Gy(P=0.003)。假阴性(-5.97Gy;P<0.001)而非假阳性(P=0.24)病变与参考 GTV D98%相关。
AI 分割的 GTV 具有前列腺内增敏的潜力,尽管增敏程度可能受到假阴性病变的不利影响。对 AI 分割的 GTV 进行前瞻性审查仍然至关重要。