Suppr超能文献

住宅绿化与心脏传导异常:流行病学证据与可解释的机器学习建模研究。

Residential greenness and cardiac conduction abnormalities: epidemiological evidence and an explainable machine learning modeling study.

机构信息

Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.

Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.

出版信息

Chemosphere. 2023 Oct;339:139671. doi: 10.1016/j.chemosphere.2023.139671. Epub 2023 Jul 28.

Abstract

BACKGROUND

Previous studies indicated the beneficial influence of residential greenness on cardiovascular disease (CVD), however, the association of residential greenness with cardiac conduction performance remains unclear. This study aims to examine the epidemiological associations between residential greenness and cardiac conduction abnormalities in rural residents, simultaneously exploring the role of residential greenness for cardiac health in an explainable machine learning modeling study.

METHODS

A total of 27,294 participants were derived from the Henan Rural Cohort. Two satellite-based indices, the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI), were used to estimate residential greenness. Independent and combined associations of residential greenness indices and physical activities with electrocardiogram (ECG) parameter abnormalities were evaluated using the logistic regression model and generalized linear model. The Gradient Boosting Machine (GBM) and the SHapely Additive exPlanations (SHAP) were employed in the modeling study.

RESULTS

The odds ratios (OR) and 95% confidence interval (CI) for QRS interval, heart rate (HR), QTc interval, and PR interval abnormalities with per interquartile range in NDVI were 0.896 (0.873-0.920), 0.955 (0.926-0.986), 1.015 (0.984-1.047), and 0.986 (0.929-1.045), respectively. Furthermore, the participants with higher physical activities plus residential greenness (assessed by EVI) were related to a 1.049-fold (1.017-1.081) and 1.298-fold (1.245-1.354) decreased risk for abnormal QRS interval and HR. Similar results were also observed in the sensitivity analysis. The NDVI ranked fifth (SHAP mean value 0.116) in the analysis for QRS interval abnormality risk in the modeling study.

CONCLUSION

A higher level of residential greenness was significantly associated with cardiac conduction abnormalities. This effect might be strengthened in residents with more physical activities. This study indicated the cruciality of environmental greenness to cardiac functions and also contributed to refining preventive medicine and greenness design strategies.

摘要

背景

先前的研究表明,居住绿化对心血管疾病(CVD)有有益影响,然而,居住绿化与心脏传导性能之间的关系尚不清楚。本研究旨在检验农村居民居住绿化与心脏传导异常之间的流行病学关联,并在可解释的机器学习建模研究中探索居住绿化对心脏健康的作用。

方法

共纳入 27294 名来自河南农村队列的参与者。使用归一化植被指数(NDVI)和增强型植被指数(EVI)两种卫星基指数来估算居住绿化。使用逻辑回归模型和广义线性模型评估居住绿化指数和体力活动与心电图(ECG)参数异常的独立和综合关联。在建模研究中采用梯度提升机(GBM)和 SHapely Additive exPlanations(SHAP)。

结果

NDVI 每四分位间距增加时,QRS 间期、心率(HR)、QTc 间期和 PR 间期异常的比值比(OR)及其 95%置信区间(CI)分别为 0.896(0.873-0.920)、0.955(0.926-0.986)、1.015(0.984-1.047)和 0.986(0.929-1.045)。此外,体力活动和居住绿化(用 EVI 评估)水平较高的参与者发生异常 QRS 间期和 HR 的风险分别降低了 1.049 倍(1.017-1.081)和 1.298 倍(1.245-1.354)。在敏感性分析中也观察到了类似的结果。在建模研究中,NDVI 在分析 QRS 间期异常风险时排名第五(SHAP 平均值为 0.116)。

结论

较高的居住绿化水平与心脏传导异常显著相关。这种影响在体力活动较多的居民中可能会增强。本研究表明环境绿化对心脏功能的重要性,并有助于完善预防医学和绿化设计策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验