Suppr超能文献

通过适应性景观平坦化和实验对甲硫氨酰-tRNA 合成酶进行β-甲硫氨酸活性的重新设计。

Redesigning methionyl-tRNA synthetase for β-methionine activity with adaptive landscape flattening and experiments.

机构信息

Laboratoire de Biologie Structurale de la Cellule (CNRS UMR7654), Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.

出版信息

Protein Sci. 2023 Sep;32(9):e4738. doi: 10.1002/pro.4738.

Abstract

Amino acids (AAs) with a noncanonical backbone would be a valuable tool for protein engineering, enabling new structural motifs and building blocks. To incorporate them into an expanded genetic code, the first, key step is to obtain an appropriate aminoacyl-tRNA synthetase. Currently, directed evolution is not available to optimize AAs with noncanonical backbones, since an appropriate selective pressure has not been discovered. Computational protein design (CPD) is an alternative. We used a new CPD method to redesign MetRS and increase its activity towards β-Met, which has an extra backbone methylene. The new method considered a few active site positions for design and used a Monte Carlo exploration of the corresponding sequence space. During the exploration, a bias energy was adaptively learned, such that the free energy landscape of the apo enzyme was flattened. Enzyme variants could then be sampled, in the presence of the ligand and the bias energy, according to their β-Met binding affinities. Eighteen predicted variants were chosen for experimental testing; 10 exhibited detectable activity for β-Met adenylation. Top predicted hits were characterized experimentally in detail. Dissociation constants, catalytic rates, and Michaelis constants for both α-Met and β-Met were measured. The best mutant retained a preference for α-Met over β-Met; however, the preference was reduced, compared to the wildtype, by a factor of 29. For this mutant, high resolution crystal structures were obtained in complex with both α-Met and β-Met, indicating that the predicted, active conformation of β-Met in the active site was retained.

摘要

具有非经典骨架的氨基酸(AAs)将是蛋白质工程的宝贵工具,能够构建新的结构基序和构建块。为了将它们纳入扩展的遗传密码,第一步也是关键的一步是获得合适的氨酰-tRNA 合成酶。目前,由于尚未发现适当的选择压力,定向进化无法用于优化具有非经典骨架的氨基酸。计算蛋白质设计(CPD)是一种替代方法。我们使用一种新的 CPD 方法重新设计 MetRS,以提高其对β-Met 的活性,β-Met 具有额外的骨架亚甲基。新方法考虑了几个设计的活性位点,并使用蒙特卡罗方法对相应的序列空间进行了探索。在探索过程中,适应性地学习了偏置能,从而使脱辅基酶的自由能景观变平。然后可以根据配体和偏置能,根据它们与β-Met 的结合亲和力对酶变体进行采样。选择了 18 个预测变体进行实验测试;其中 10 个对β-Met 腺苷酸化表现出可检测的活性。对预测的顶级命中物进行了详细的实验表征。测定了α-Met 和β-Met 的解离常数、催化速率和米氏常数。最佳突变体对α-Met 的偏好仍保留,但与野生型相比,偏好度降低了 29 倍。对于该突变体,获得了与α-Met 和β-Met 复合物的高分辨率晶体结构,表明预测的β-Met 在活性位点的活性构象得以保留。

相似文献

5
Enzyme redesign and genetic code expansion.酶的重新设计与遗传密码扩展
Protein Eng Des Sel. 2023 Jan 21;36. doi: 10.1093/protein/gzad017.

本文引用的文献

2
Computational design of constitutively active cGAS.组成型激活的环鸟苷酸合成酶(cGAS)的计算设计
Nat Struct Mol Biol. 2023 Jan;30(1):72-80. doi: 10.1038/s41594-022-00862-z. Epub 2023 Jan 2.
3
How much can physics do for protein design?物理学能在多大程度上助力蛋白质设计?
Curr Opin Struct Biol. 2022 Feb;72:46-54. doi: 10.1016/j.sbi.2021.07.011. Epub 2021 Aug 27.
4
Physics-Based Computational Protein Design: An Update.基于物理的计算蛋白质设计:更新。
J Phys Chem A. 2020 Dec 24;124(51):10637-10648. doi: 10.1021/acs.jpca.0c07605. Epub 2020 Nov 10.
5
Hybrid MC/MD for protein design.混合 MC/MD 用于蛋白质设计。
J Chem Phys. 2020 Aug 7;153(5):054113. doi: 10.1063/5.0013320.
10
Strategies for designing non-natural enzymes and binders.非天然酶和结合物的设计策略。
Curr Opin Chem Biol. 2018 Dec;47:67-76. doi: 10.1016/j.cbpa.2018.07.022. Epub 2018 Sep 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验