Shi Chu, Long Zhiwen, Wu Caiqin, Dai Han, Li Zhengchun, Qiao Hui, Liu Ke, Fan Qi Hua, Wang Keliang
Key Laboratory of Eco-textiles, Ministry of Education, School of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China.
Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China.
Small. 2023 Nov;19(48):e2303802. doi: 10.1002/smll.202303802. Epub 2023 Jul 30.
The volume expansion of CoFe O anode poses a significant challenge in the commercial application of lithium/sodium-ion batteries (LIBs/SIBs). However, metal-organic-frameworks (MOF) offer superior construction of heterostructures with refined interfacial interactions and lower ion diffusion barriers in Li/Na storage. In this study, the CoFe O @carbon nanofibers derived from MOF are produced through electrospinning, in situ growth followed by calcination, which are then confined within an MXene-confined MOF-derived porous CoFe O @carbon composite architecture under alkali treatment. The CoFe O nanofibers anchor on the alkalized MXene that is decorated with the NaOH solution to form a multi-pleated structure. The sandwich-like structure of the composite effectively alleviates the volume expansion and shortens the Li/Na-ion diffusion path, which displays high capacity and outstanding rate performance as anode materials for LIBs/SIBs. As a consequence, the obtained CoFe O @carbon@alkalized MXene composite anode shows satisfied rate performance at current density of 10 A g for LIBs (318 mAh·g ) and 5 A g for SIBs (149 mAh g ). The excellent cycling performance is further demonstrated at a high current density, where it maintains a discharge capacity of 807 mAh g at 2 A g after 400 cycles for LIBs and 130 mAh g at 1 A g even after 1000 cycles for SIBs.
钴铁氧体阳极的体积膨胀给锂/钠离子电池(LIBs/SIBs)的商业应用带来了重大挑战。然而,金属有机框架(MOF)在构建具有精细界面相互作用和更低锂/钠存储离子扩散势垒的异质结构方面具有优势。在本研究中,通过静电纺丝、原位生长然后煅烧制备了源自MOF的钴铁氧体@碳纳米纤维,随后在碱处理下将其限制在MXene限制的MOF衍生多孔钴铁氧体@碳复合结构中。钴铁氧体纳米纤维锚定在经氢氧化钠溶液修饰的碱化MXene上,形成多重褶皱结构。该复合材料的三明治状结构有效缓解了体积膨胀并缩短了锂/钠离子扩散路径,作为LIBs/SIBs的阳极材料表现出高容量和出色的倍率性能。因此,所制备的钴铁氧体@碳@碱化MXene复合阳极在LIBs的10 A g电流密度下(318 mAh·g)和SIBs的5 A g电流密度下(149 mAh g)表现出令人满意的倍率性能。在高电流密度下进一步证明了其优异的循环性能,对于LIBs,在2 A g下400次循环后保持807 mAh g的放电容量,对于SIBs,在1 A g下即使1000次循环后仍保持130 mAh g的放电容量。