Li Xiaoqiang, Guan Guangguang, Yu Chuanjin, Cheng Bingjie, Chen Xin, Zhang Kaiyin, Xiang Jun
School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
Institute of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
Dalton Trans. 2023 Aug 15;52(32):11187-11195. doi: 10.1039/d3dt01642k.
The binary composite, ZnSnO microcubes (ZSO MC) homogeneously parceled in an N-doped carbon nanofiber membrane (ZSO@CNFM), was synthesized a mild hydrothermal, electrospinning and carbonization process as a flexible lithium-ion battery (LIB) anode material. The unique carbon-coating layer architecture of ZSO@CNFM not only plays a crucial role in alleviating the volume change of ZSO MC during lithium ion insertion/extraction processes, but also constructs a three-dimensional (3D) transport network with the help of interconnected carbon nanofibers (CNFs) to ensure the structural integrity of the material and promote the electrochemical reaction kinetics. Due to its good flexibility characteristics, the as-prepared ZSO@CNFM can be directly adopted as an anode material for LIBs without the use of copper foil, conductive carbon black and any binder. Electrochemical surveying results manifest that the optimal ZSO@CNFM electrode displays excellent cycling stability (582.6 mA h g after 100 lithiation/delithiation cycles at 100 mA g), high coulombic efficiency (CE, 99.6% at 100th cycles), and superior rate performance (349.5 mA h g at 2 A g). The good electrochemical properties can be ascribed to the synergistic effect of the high theoretical specific capacity of ZSO MC, favourable stability of the carbon substrate, the open structure of ZSO@CNFM and the 3D continuous highly conductive framework for rapid electron/ion transfer.
通过温和的水热、静电纺丝和碳化过程,合成了均匀包裹在氮掺杂碳纳米纤维膜(ZSO@CNFM)中的二元复合材料ZnSnO微立方体(ZSO MC),作为一种柔性锂离子电池(LIB)负极材料。ZSO@CNFM独特的碳涂层结构不仅在缓解ZSO MC在锂离子嵌入/脱出过程中的体积变化方面起着关键作用,而且在相互连接的碳纳米纤维(CNF)的帮助下构建了三维(3D)传输网络,以确保材料的结构完整性并促进电化学反应动力学。由于其良好的柔韧性,制备的ZSO@CNFM无需使用铜箔、导电炭黑和任何粘结剂,即可直接用作LIB的负极材料。电化学测试结果表明,最佳的ZSO@CNFM电极表现出优异的循环稳定性(在100 mA g下进行100次锂化/脱锂循环后为582.6 mA h g)、高库仑效率(第100次循环时为99.6%)和优异的倍率性能(在2 A g下为349.5 mA h g)。良好的电化学性能可归因于ZSO MC的高理论比容量、碳基体的良好稳定性、ZSO@CNFM的开放结构以及用于快速电子/离子传输的3D连续高导电框架的协同效应。