Suppr超能文献

包含基因特征和剪切波弹性成像的预测模型,用于预测胆道闭锁患者Kasai手术后的预后。

Predictive model containing gene signature and shear wave elastography to predict patient outcomes after Kasai surgery in biliary atresia.

作者信息

Wang Guotao, Chen Huadong, Sun Panpan, Zhou Wenying, Jiang Hong, Zhong Zhihai, Chen Meixi, Xie Xiaoyan, Luo Zhenhua, Zhou Luyao

机构信息

Department of Medical Ultrasonics, Institute for Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.

Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China.

出版信息

Hepatol Res. 2023 Nov;53(11):1126-1133. doi: 10.1111/hepr.13948. Epub 2023 Aug 8.

Abstract

AIMS

Infants with biliary atresia (BA) are treated with Kasai portoenterostomy (KPE) surgery, but many BA patients need subsequent salvage liver transplants. The aim of this study is to develop a comprehensive gene-clinical model based on two-dimensional shear wave elastography (2DSWE), liver gene expression, and other clinical parameters to predict response to KPE for BA patients.

METHODS

Differentially expressed gene patterns between liver samples of BA (n = 102) and non-BA control (n = 14) were identified using RNA sequencing analysis. Biliary atresia patients were then randomly assigned to training and validation cohorts. Gene classifier based on the differentially expressed genes was built in the training cohort. Nomogram models with and without gene classifier were further constructed and validated for predicting native liver survival of BA patients. The utility of the nomograms was compared by C-index.

RESULTS

Using the least absolute shrinkage and selection operator model, we generated a nine-gene prognostic classifier. The nomogram based on the nine-gene classifier, age, preoperative 2DSWE, and albumin had the better C-index compared to gene classifier alone in the training cohort (0.83 [0.76-0.90] vs. 0.69 [0.61-0.77], p = 0.003) and the validation cohort (0.74 [0.67-0.82] vs. 0.62 [0.55-0.70], p = 0.001). Using risk scores developed from the nomogram, the 12-month survival rates of BA patients with native liver were 35.7% (95% confidence interval [CI], 22.7-56.3) in the high-risk group and 80.8% (95% CI, 63.4-100.0) in the low-risk group in the validation cohort.

CONCLUSIONS

The comprehensive genetic-clinical nomogram based on preoperative 2DSWE, liver gene expression, and other clinical parameters can accurately predict response to KPE.

摘要

目的

患有胆道闭锁(BA)的婴儿接受肝门空肠吻合术(KPE)治疗,但许多BA患者随后需要进行挽救性肝移植。本研究的目的是基于二维剪切波弹性成像(2DSWE)、肝脏基因表达和其他临床参数建立一个综合基因 - 临床模型,以预测BA患者对KPE的反应。

方法

使用RNA测序分析确定BA患者肝脏样本(n = 102)和非BA对照样本(n = 14)之间的差异表达基因模式。然后将胆道闭锁患者随机分配到训练队列和验证队列。在训练队列中建立基于差异表达基因的基因分类器。进一步构建并验证有无基因分类器的列线图模型,以预测BA患者的自体肝生存率。通过C指数比较列线图的效用。

结果

使用最小绝对收缩和选择算子模型,我们生成了一个九基因预后分类器。在训练队列中,基于九基因分类器、年龄、术前2DSWE和白蛋白的列线图与单独的基因分类器相比具有更好的C指数(0.83 [0.76 - 0.90] 对 0.69 [0.61 - 0.77],p = 0.003),在验证队列中也是如此(0.74 [0.67 - 0.82] 对 0.62 [0.55 - 0.70],p = 0.001)。使用从列线图得出的风险评分,在验证队列中,高风险组BA患者自体肝的12个月生存率为35.7%(95%置信区间[CI],22.7 - 56.3),低风险组为80.8%(95% CI,63.4 - 100.0)。

结论

基于术前2DSWE、肝脏基因表达和其他临床参数的综合基因 - 临床列线图可以准确预测对KPE的反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验