Suppr超能文献

基于对 47 个队列的系统评价和荟萃分析,开发和验证了免疫检查点抑制剂治疗肝细胞癌患者的预后风险预测模型。

Development and validation of prognostic risk prediction models for hepatocellular carcinoma patients treated with immune checkpoint inhibitors based on a systematic review and meta-analysis of 47 cohorts.

机构信息

Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China.

Department of Organ Transplantation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.

出版信息

Front Immunol. 2023 Jul 14;14:1215745. doi: 10.3389/fimmu.2023.1215745. eCollection 2023.

Abstract

OBJECTIVE

To identify the risk factors associated with prognosis in patients with hepatocellular carcinoma (HCC) treated with immune checkpoint inhibitors (ICI) via meta-analysis. And to construct prediction models to aid in the prediction and improvement of prognosis.

METHODS

We searched PubMed, Embase, Web of Science and Cochrane Library for relevant studies from inception to March 29, 2023. After completing literature screening and data extraction, we performed meta-analysis, sensitivity analysis, and subgroup analysis to identify risk factors associated with OS and PFS. Using the pooled hazard ratio value for each risk factor, we constructed prediction models, which were then validated using datasets from 19 centers in Japan and two centers in China, comprising a total of 204 patients.

RESULTS

A total of 47 studies, involving a total of 7649 ICI-treated HCC patients, were included in the meta-analysis. After analyzing 18 risk factors, we identified AFP, ALBI, NLR, ECOG performance status, Child-Pugh stage, BCLC stage, tumor number, vascular invasion and combination therapy as predictors for OS prediction model, while AFP, ALBI, NLR, ECOG performance status, Child-Pugh stage, BCLC stage, tumor number and vascular invasion were selected as predictors for PFS model. To validate the models, we scored two independent cohorts of patients using both prediction models. Our models demonstrated good performance in these cohorts. In addition, in the pooled cohort of 204 patients, Our models also showed good performance with area under the curve (AUC) values of 0.712, 0.753, and 0.822 for the OS prediction model at 1-year, 2-year, and 3-year follow-up points, respectively, and AUC values of 0.575, 0.749 and 0.691 for the PFS prediction model Additionally, the calibration curve, decision curve analysis, and Kaplan-Meier curves in the pooled cohort all supported the validity of both models.

CONCLUSION

Based on the meta-analysis, we successfully constructed the OS and PFS prediction models for ICI-treated HCC patients. We also validated the models externally and observed good discrimination and calibration. The model's selected indicators are easily obtainable, making them suitable for further application in clinical practice.

摘要

目的

通过荟萃分析,确定接受免疫检查点抑制剂(ICI)治疗的肝细胞癌(HCC)患者的预后相关因素,并构建预测模型以辅助预测和改善预后。

方法

我们检索了 PubMed、Embase、Web of Science 和 Cochrane Library 从建库至 2023 年 3 月 29 日的相关研究。完成文献筛选和数据提取后,我们进行荟萃分析、敏感性分析和亚组分析,以确定与 OS 和 PFS 相关的危险因素。使用每个危险因素的汇总风险比值,我们构建了预测模型,然后使用来自日本 19 个中心和中国 2 个中心的 204 例患者的数据进行验证。

结果

共有 47 项研究,共纳入 7649 例接受 ICI 治疗的 HCC 患者,进行了荟萃分析。在分析了 18 个危险因素后,我们确定 AFP、ALBI、NLR、ECOG 表现状态、Child-Pugh 分期、BCLC 分期、肿瘤数量、血管侵犯和联合治疗是 OS 预测模型的预测因素,而 AFP、ALBI、NLR、ECOG 表现状态、Child-Pugh 分期、BCLC 分期、肿瘤数量和血管侵犯是 PFS 模型的预测因素。为了验证模型,我们使用两个预测模型对两个独立的患者队列进行评分。我们的模型在这些队列中表现良好。此外,在 204 例患者的汇总队列中,我们的模型在 1 年、2 年和 3 年随访点的 OS 预测模型中也表现出良好的性能,曲线下面积(AUC)值分别为 0.712、0.753 和 0.822,而 PFS 预测模型的 AUC 值分别为 0.575、0.749 和 0.691。此外,汇总队列中的校准曲线、决策曲线分析和 Kaplan-Meier 曲线均支持两个模型的有效性。

结论

基于荟萃分析,我们成功构建了接受 ICI 治疗的 HCC 患者的 OS 和 PFS 预测模型。我们还对模型进行了外部验证,并观察到了良好的区分度和校准度。模型选择的指标易于获得,使其适合进一步在临床实践中应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7223/10380940/eadcfe72974c/fimmu-14-1215745-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验