B R Pushpa, Rani N Shobha
Department of Computer Science, School of Computing, Mysuru, Amrita Vishwa Vidyapeetham, India.
Data Brief. 2023 Jul 14;49:109388. doi: 10.1016/j.dib.2023.109388. eCollection 2023 Aug.
Mobile-captured images of medicinal plants are widely used in various research investigations. Machine vision-based tasks such as the identification of plant species types for intelligent imaging device applications take a significant part in it. Botanists, farmers and researchers can reliably identify medicinal plants with the help of images captured using smartphones. Mobile captured images can be used for quality control to make sure that the right plant species are being used in pharmaceutical products. In the field of education, pictures of medicinal plants and their usage can be used to educate learners, medical professionals, and the general public. Further, various research investigations in the area of chemistry, pharmacology, the therapeutic potential of medicinal plants, images can be employed. In this paper, we contribute a dataset of Indian medicinal plant species. The dataset is collected from different regions of Karnataka and Kerala. Datasets include characteristics such as multiple resolutions, varying illuminations, varying backgrounds, and seasons in the year. The datasets consist of 5900 images of forty plant species and single leaf images of eighty plant species consisting of 6900 samples obtained from real-time conditions using smartphones. The datasets contributed would be useful to researchers to investigate on development of algorithmic models based on image processing, machine learning, and deep learning concepts to educate about medicinal plants. The dataset can be accessed by anybody, without charge, at DOI:10.17632/748f8jkphb.2, 10.17632/748f8jkphb.3.
药用植物的手机拍摄图像广泛应用于各种研究调查中。基于机器视觉的任务,如用于智能成像设备应用的植物物种类型识别,在其中占据重要部分。植物学家、农民和研究人员借助智能手机拍摄的图像能够可靠地识别药用植物。手机拍摄的图像可用于质量控制,以确保制药产品中使用的是正确的植物物种。在教育领域,药用植物及其用途的图片可用于教育学习者、医学专业人员和普通公众。此外,在化学、药理学、药用植物治疗潜力等领域的各种研究调查中,图像也可得到应用。在本文中,我们提供了一个印度药用植物物种的数据集。该数据集是从卡纳塔克邦和喀拉拉邦的不同地区收集的。数据集包括多种分辨率、不同光照、不同背景以及一年中的不同季节等特征。数据集由四十种植物物种的5900张图像和八十种植物物种的单叶图像组成,共6900个样本,这些样本是使用智能手机从实时条件下获取的。所提供的数据集将有助于研究人员基于图像处理、机器学习和深度学习概念来研究算法模型的开发,以普及药用植物知识。任何人都可以免费通过DOI:10.17632/748f8jkphb.2、10.17632/748f8jkphb.3访问该数据集。