Willems Esther, Gloerich Jolein, Suppers Anouk, van der Flier Michiel, van den Heuvel Lambert P, van de Kar Nicole, Philipsen Ria H L A, van Dael Maurice, Kaforou Myrsini, Wright Victoria J, Herberg Jethro A, Torres Federico Martinon, Levin Michael, de Groot Ronald, van Gool Alain J, Lefeber Dirk J, Wessels Hans J C T, de Jonge Marien I
Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
iScience. 2023 Jul 4;26(8):107257. doi: 10.1016/j.isci.2023.107257. eCollection 2023 Aug 18.
Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection.
感染和发病机制主要是基于差异基因或蛋白质表达进行研究的。对于蛋白质功能多样性至关重要的翻译后修饰,我们了解得较少。我们应用了一种创新的糖蛋白质组学方法来研究感染后全系统蛋白质组范围内的糖基化情况。在来自明确对照和患者的血浆中对蛋白质位点特异性糖基化进行了表征。我们发现了3862个独特特征,其中我们鉴定出463个不同的完整糖肽,这些糖肽可映射到30多种不同的蛋白质上。使用统计分析得出一个糖肽特征,该特征能够显著区分细菌感染或病毒感染的患者。此外,在机器学习算法的支持下,我们展示了基于独特的宿主血浆糖肽特征识别致病病原体的能力。这些结果表明,糖蛋白质组学作为一种创新方法,在改善对感染相关生物学变化的解释方面具有巨大潜力。