Suppr超能文献

六氟异丙醇催化产生单线态氧用于染料的选择性降解

Photogeneration of singlet oxygen catalyzed by hexafluoroisopropanol for selective degradation of dyes.

作者信息

Han Jia, Wang Lei, Cao Wenjin, Yuan Qinqin, Zhou Xiaoguo, Liu Shilin, Wang Xue-Bin

机构信息

Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.

Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.

出版信息

iScience. 2023 Jul 10;26(8):107306. doi: 10.1016/j.isci.2023.107306. eCollection 2023 Aug 18.

Abstract

Singlet oxygen (O) shows great potential for selective degradation of dyes in environmental remediation of wastewater. In this study, we showcased that O can be effectively generated from an anion complex composed of deprotonated hexafluoroisopropanol anion ([HFIP]) with hydroperoxyl radical (⋅HO) via ultraviolet (UV) photodetachment. Electronic structure calculations and cryogenic negative ion photoelectron spectroscopy unveil critical proton transfer upon complex formation and electron ejection, effectively photoconverting prevalent triplet ground state O to long-lived excited O, stabilized by nearby HFIP. Inspired by this spectroscopic study, a novel "photogeneration" strategy is proposed to produce O with the incorporation of atmospheric O and HFIP, acting as a catalyst. Conceptually, the designed catalytic cycle upon UV irradiation and electron injection is able to achieve different degradations of dye molecules in a controllable fashion from decolorization to complete mineralization, shedding new light on potential water purification.

摘要

单线态氧(O)在废水环境修复中对染料的选择性降解显示出巨大潜力。在本研究中,我们展示了通过紫外(UV)光剥离,由去质子化的六氟异丙醇阴离子([HFIP])与氢过氧自由基(⋅HO)组成的阴离子络合物可有效生成O。电子结构计算和低温负离子光电子能谱揭示了络合物形成和电子 ejection 时的关键质子转移,有效地将普遍存在的三线态基态O光转化为长寿命激发态O,并由附近的HFIP稳定。受此光谱研究启发,提出了一种新颖的“光生”策略,通过引入大气中的O和作为催化剂的HFIP来产生O。从概念上讲,所设计的紫外照射和电子注入催化循环能够以可控方式实现染料分子从脱色到完全矿化的不同降解,为潜在的水净化提供了新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb5c/10374460/3777f1f0ff7a/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验