Suppr超能文献

检验同质性:稀疏功能数据的问题

Testing homogeneity: the trouble with sparse functional data.

作者信息

Zhu Changbo, Wang Jane-Ling

机构信息

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, United States.

Department of Statistics, University of California, Davis, Davis, United States.

出版信息

J R Stat Soc Series B Stat Methodol. 2023 Apr 3;85(3):705-731. doi: 10.1093/jrsssb/qkad021. eCollection 2023 Jul.

Abstract

Testing the homogeneity between two samples of functional data is an important task. While this is feasible for intensely measured functional data, we explain why it is challenging for sparsely measured functional data and show what can be done for such data. In particular, we show that testing the marginal homogeneity based on point-wise distributions is feasible under some mild constraints and propose a new two-sample statistic that works well with both intensively and sparsely measured functional data. The proposed test statistic is formulated upon energy distance, and the convergence rate of the test statistic to its population version is derived along with the consistency of the associated permutation test. The aptness of our method is demonstrated on both synthetic and real data sets.

摘要

检验两个功能数据样本之间的同质性是一项重要任务。虽然对于密集测量的功能数据来说这是可行的,但我们解释了为什么对于稀疏测量的功能数据具有挑战性,并展示了针对此类数据可以采取的措施。特别是,我们表明在一些温和的约束条件下,基于逐点分布检验边际同质性是可行的,并提出了一种新的双样本统计量,它对密集和稀疏测量的功能数据都适用。所提出的检验统计量基于能量距离构建,并推导了检验统计量到其总体版本的收敛速度以及相关排列检验的一致性。我们的方法在合成数据集和真实数据集上都得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e58/10376451/cd8e8defa50e/qkad021f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验