Suppr超能文献

基于深度学习卷积神经网络的起搏器检测和 MRI 兼容起搏器识别,以提高患者安全性。

Detection of Pacemaker and Identification of MRI-conditional Pacemaker Based on Deep-learning Convolutional Neural Networks to Improve Patient Safety.

机构信息

Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea.

Biomedical Systems Informatics, Yonsei University College of Medicine, 50-1 Yonsei- ro, Seodaemun-gu, Seoul, 03722, Korea.

出版信息

J Med Syst. 2023 Jul 31;47(1):80. doi: 10.1007/s10916-023-01981-w.

Abstract

With the increased availability of magnetic resonance imaging (MRI) and a progressive rise in the frequency of cardiac device implantation, there is an increased chance that patients with implanted cardiac devices require MRI examination during their lifetime. Though MRI is generally contraindicated in patients who have undergone pacemaker implantation with electronic circuits, the recent introduction of MR Conditional pacemaker allows physicians to take advantage of MRI to assess these patients during diagnosis and treatment. When MRI examinations of patients with pacemaker are requested, physicians must confirm whether the device is a conventional pacemaker or an MR Conditional pacemaker by reviewing chest radiographs or the electronic medical records (EMRs). The purpose of this study was to evaluate the utility of a deep convolutional neural network (DCNN) trained to detect pacemakers on chest radiographs and to determine the device's subclassification. The DCNN perfectly detected pacemakers on chest radiographs and the accuracy of the subclassification of pacemakers using the internal and external test datasets were 100.0% (n = 106/106) and 90.1% (n = 279/308). The DCNN can be applied to the radiologic workflow for double-checking purposes, thereby improving patient safety during MRI and preventing busy physicians from making errors.

摘要

随着磁共振成像(MRI)的普及和心脏设备植入频率的不断提高,在患者的一生中,有越来越多的植入心脏设备的患者需要进行 MRI 检查。尽管电子电路起搏器植入患者通常禁忌进行 MRI,但最近引入的 MRI 兼容起搏器允许医生在诊断和治疗期间利用 MRI 来评估这些患者。当需要对起搏器患者进行 MRI 检查时,医生必须通过查看胸部 X 光片或电子病历(EMR)来确认设备是传统起搏器还是 MRI 兼容起搏器。本研究的目的是评估一种深度卷积神经网络(DCNN)在胸部 X 光片上检测起搏器的效用,并确定设备的细分分类。DCNN 在胸部 X 光片上完美地检测到了起搏器,使用内部和外部测试数据集对起搏器进行细分分类的准确率为 100.0%(n=106/106)和 90.1%(n=279/308)。DCNN 可应用于放射学工作流程中进行双重检查,从而提高 MRI 期间的患者安全性,并防止忙碌的医生犯错。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验