Suppr超能文献

重新考察两种预测深冷冲击磨后机械诱导无序的模型。

Re-visitation of Two Models for Predicting Mechanically-Induced Disordering after Cryogenic Impact Milling.

机构信息

School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, 422C Mellon Hall, Pittsburgh, PA, 15282, USA.

出版信息

Pharm Res. 2023 Dec;40(12):2887-2902. doi: 10.1007/s11095-023-03569-y. Epub 2023 Jul 31.

Abstract

PURPOSE

To compare the prediction accuracy of two models used to characterize the complete disordering potential of materials after extensive cryogenic milling.

METHODS

Elastic shear moduli (μ) were simulated in silico. Comparison with available literature values confirmed that computations were reasonable. Complete disordering potential was predicted using the critical dislocation density (ρ) and bivariate empirical models. To compare the prediction accuracy of the models, each material added for dataset expansion was cryomilled for up to 5 hr. Mechanical disordering after comminution was characterized using PXRD and DSC, and pooled with previously published results.

RESULTS

Simulated μ enabled predictions using the ρ model for 29 materials. This model mischaracterized the complete disordering behavior for 13/29 materials, giving an overall prediction accuracy of 55%. The originally published bivariate empirical model classification boundary correctly grouped the disordering potential for 31/32 materials from the expanded dataset. Recalibration of this model retained a 94% prediction accuracy, with only 2 misclassifications.

CONCLUSIONS

Prediction accuracy of the ρ model decreased with dataset expansion, relative to previously published results. Overall, the ρ model was considerably less accurate relative to the bivariate empirical model, which retained very high prediction accuracy for the expanded dataset. Although the empirical model does not imply a mechanism, model robustness suggests the importance of glass transition temperature (T) and molar volume (M) on formation and persistence of amorphous materials following extensive cryomilling.

摘要

目的

比较两种模型在预测经过大量深冷研磨后的材料完全无序潜力方面的预测精度。

方法

采用计算机模拟弹性剪切模量(μ)。与现有文献值的比较证实了计算的合理性。使用临界位错密度(ρ)和双变量经验模型预测完全无序潜力。为了比较模型的预测精度,对每个用于数据集扩展的材料进行深冷研磨,研磨时间最长可达 5 小时。使用 PXRD 和 DSC 对粉碎后的机械无序进行了表征,并与之前发表的结果进行了汇总。

结果

模拟μ使 29 种材料能够使用ρ模型进行预测。该模型对 13/29 种材料的完全无序行为特征描述不准确,整体预测精度为 55%。最初发表的双变量经验模型分类边界正确地将扩展数据集的 31/32 种材料的无序潜力进行了分组。对该模型进行重新校准后,预测精度保持在 94%,仅出现 2 次误分类。

结论

与之前发表的结果相比,随着数据集的扩展,ρ模型的预测精度降低。总体而言,ρ模型的准确性明显低于双变量经验模型,对于扩展数据集,经验模型的预测精度非常高。虽然经验模型没有暗示机制,但模型的稳健性表明玻璃化转变温度(T)和摩尔体积(M)在经过大量深冷研磨后形成和保持非晶材料方面的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验