State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
Plant Biotechnol J. 2023 Nov;21(11):2358-2373. doi: 10.1111/pbi.14137. Epub 2023 Jul 31.
Tiller and seed number are key determinants of rice (Oryza sativa) yield. These traits are mainly affected by tiller, panicle, spikelet and stigma formation, but to date, no single gene involved in the development of all these organs has been identified. Here, we found a rice mutant defective stigma and panicle (dsp) with greatly reduced numbers of tillers and panicle branches, and ovaries lacking stigmas, due to defects in primordium initiation. We cloned DSP using sequencing-based mapping and verified its function with the CRISPR/Cas9 system. DSP encodes a transcription factor containing an APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain that recognizes the GCC motif and a transcription-activating domain at the site of 244-314 that contains an angiosperm-related (AR) motif. Mutating the AR motif resulted in the dsp mutant phenotypes, whereas mutating the AP2/ERF domain led to seedling death. DSP directly regulated PINOID (PID) expression to determine the emergence of rice stigmas, and PID overexpression partially rescued the stigma defect in the dsp cr2-8 and dsp mutants. Moreover, DSP indirectly affected LAX PANICLE1 (LAX1) expression to determine tiller primordium formation and synergistically regulated panicle primordium development. Our results indicated that DSP was a key regulator that modulated different genetic pathways to control the initiation of stigma primordia, the axillary meristem formation of tillers and panicle branches, which revealed their molecular mechanisms and cross-networks, laying the vital foundation for rice yield and trait improvement.
分蘖数和种子数是水稻(Oryza sativa)产量的关键决定因素。这些特性主要受分蘖、穗、小穗和柱头形成的影响,但迄今为止,尚未鉴定出涉及所有这些器官发育的单个基因。在这里,我们发现了一个水稻突变体缺陷柱头和穗(dsp),其分蘖和穗分枝数量大大减少,由于原基起始缺陷,子房缺乏柱头。我们使用基于测序的图谱克隆了 DSP,并使用 CRISPR/Cas9 系统验证了其功能。DSP 编码一个转录因子,包含一个 APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) 结构域,该结构域识别 GCC 基序和 244-314 位点的转录激活结构域,该位点包含一个被子植物相关 (AR) 基序。突变 AR 基序导致 dsp 突变体表型,而突变 AP2/ERF 结构域导致幼苗死亡。DSP 直接调控 PINOID (PID) 的表达来决定水稻柱头的出现,而过表达 PID 部分挽救了 dsp cr2-8 和 dsp 突变体的柱头缺陷。此外,DSP 间接影响 LAX PANICLE1 (LAX1) 的表达来决定分蘖原基的形成,并协同调控穗原基的发育。我们的结果表明,DSP 是一个关键的调节剂,调节不同的遗传途径来控制柱头原基的起始、分蘖和穗分枝的腋芽形成,揭示了它们的分子机制和交叉网络,为水稻产量和性状改良奠定了重要基础。