Suppr超能文献

基于多通道卷积矩阵奇异值分解的迁移学习

Transfer Learning With Singular Value Decomposition of Multichannel Convolution Matrices.

作者信息

Yeung Tak Shing Au, Cheung Ka Chun, Ng Michael K, See Simon, Yip Andy

机构信息

NVIDIA AI Technology Center, NVIDIA, Hong Kong 852, China

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.

出版信息

Neural Comput. 2023 Sep 8;35(10):1678-1712. doi: 10.1162/neco_a_01608.

Abstract

The task of transfer learning using pretrained convolutional neural networks is considered. We propose a convolution-SVD layer to analyze the convolution operators with a singular value decomposition computed in the Fourier domain. Singular vectors extracted from the source domain are transferred to the target domain, whereas the singular values are fine-tuned with a target data set. In this way, dimension reduction is achieved to avoid overfitting, while some flexibility to fine-tune the convolution kernels is maintained. We extend an existing convolution kernel reconstruction algorithm to allow for a reconstruction from an arbitrary set of learned singular values. A generalization bound for a single convolution-SVD layer is devised to show the consistency between training and testing errors. We further introduce a notion of transfer learning gap. We prove that the testing error for a single convolution-SVD layer is bounded in terms of the gap, which motivates us to develop a regularization model with the gap as the regularizer. Numerical experiments are conducted to demonstrate the superiority of the proposed model in solving classification problems and the influence of various parameters. In particular, the regularization is shown to yield a significantly higher prediction accuracy.

摘要

考虑了使用预训练卷积神经网络进行迁移学习的任务。我们提出了一个卷积奇异值分解(convolution-SVD)层,用于通过在傅里叶域中计算的奇异值分解来分析卷积算子。从源域提取的奇异向量被转移到目标域,而奇异值则使用目标数据集进行微调。通过这种方式,实现了降维以避免过拟合,同时保持了对卷积核进行微调的一定灵活性。我们扩展了现有的卷积核重构算法,以允许从任意一组学习到的奇异值进行重构。设计了单个卷积奇异值分解层的泛化界,以显示训练误差和测试误差之间的一致性。我们进一步引入了迁移学习差距的概念。我们证明,单个卷积奇异值分解层的测试误差在差距方面是有界的,这促使我们开发一个以差距为正则化器的正则化模型。进行了数值实验,以证明所提出模型在解决分类问题方面的优越性以及各种参数的影响。特别是,正则化显示出能产生显著更高的预测准确率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验