Suppr超能文献

优化 S 型非核糖体肽合成酶的指南。

Guidelines for Optimizing Type S Nonribosomal Peptide Synthetases.

机构信息

Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany.

Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.

出版信息

ACS Synth Biol. 2023 Aug 18;12(8):2432-2443. doi: 10.1021/acssynbio.3c00295. Epub 2023 Jul 31.

Abstract

Bacterial biosynthetic assembly lines, such as nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), play a crucial role in the synthesis of natural products that have significant therapeutic potential. The ability to engineer these biosynthetic assembly lines offers opportunities to produce artificial nonribosomal peptides, polyketides, and their hybrids with improved properties. In this study, we introduced a synthetic NRPS variant, termed type S NRPS, which simplifies the engineering process and enables biocombinatorial approaches for generating nonribosomal peptide libraries in a parallelized high-throughput manner. However, initial generations of type S NRPSs exhibited a bottleneck that led to significantly reduced production yields. To address this challenge, we employed two optimization strategies. First, we truncated SYNZIPs from the N- and/or C-terminus of the NRPS. SYNZIPs comprise a large set of well-characterized synthetic protein interaction reagents. Second, we incorporated a structurally flexible glycine-serine linker between the NRPS protein and the attached SYNZIP, aiming to improve dynamic domain-domain interactions. Through an iterative optimization process, we achieved remarkable improvements in production yields, with titer increases of up to 55-fold compared to the nonoptimized counterparts. These optimizations successfully restored production levels of type S NRPSs to those observed in wild-type NRPSs and even surpassed them. Overall, our findings demonstrate the potential of engineering bacterial biosynthetic assembly lines for the production of artificial nonribosomal peptides. In addition, optimizing the SYNZIP toolbox can have valuable implications for diverse applications in synthetic biology, such as metabolic engineering, cell signaling studies, or engineering of other multienzyme complexes, such as PKSs.

摘要

细菌生物合成组装线,如非核糖体肽合成酶(NRPSs)和聚酮合酶(PKSs),在合成具有重要治疗潜力的天然产物方面发挥着关键作用。对这些生物合成组装线进行工程改造的能力为生产具有改进性质的人工非核糖体肽、聚酮及其杂合体提供了机会。在这项研究中,我们引入了一种合成 NRPS 变体,称为 S 型 NRPS,它简化了工程化过程,并能够以平行高通量的方式进行生物组合方法来生成非核糖体肽文库。然而,最初几代的 S 型 NRPS 存在一个瓶颈,导致产量显著降低。为了解决这个挑战,我们采用了两种优化策略。首先,我们从 NRPS 的 N-和/或 C-末端截断 SYNZIPs。SYNZIPs 由一组大量经过充分表征的合成蛋白相互作用试剂组成。其次,我们在 NRPS 蛋白和连接的 SYNZIP 之间插入一个结构灵活的甘氨酸-丝氨酸接头,旨在改善动态的结构域-结构域相互作用。通过迭代优化过程,我们实现了产量的显著提高,与未优化的对应物相比,产量增加了高达 55 倍。这些优化成功地将 S 型 NRPS 的产量恢复到野生型 NRPS 观察到的水平,甚至超过了野生型 NRPS 的水平。总的来说,我们的研究结果表明,对细菌生物合成组装线进行工程改造用于生产人工非核糖体肽具有潜力。此外,优化 SYNZIP 工具箱可以对合成生物学的各种应用具有重要意义,例如代谢工程、细胞信号研究或其他多酶复合物(如 PKSs)的工程设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f4f/10443035/a92f8b5b512f/sb3c00295_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验