Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States.
J Am Soc Mass Spectrom. 2023 Sep 6;34(9):1941-1948. doi: 10.1021/jasms.3c00220. Epub 2023 Jul 31.
Feature finding is a common way to process untargeted mass spectrometry (MS) data to obtain a list of chemicals present in a sample. Most feature finding algorithms naïvely search for patterns of unique descriptors (, /, retention time, and mobility) and provide a list of unannotated features. There is a need for solutions in processing untargeted MS data, independent of chemical or origin, to assess features based on measurement quality with the aim of improving interpretation. Here, we report the signal response evaluation as a method by which to assess the individual features observed in untargeted MS data. The basis of this method is the ubiquitous relationship between the amount and response in all MS measurements. Three different metrics with user-defined parameters can be used to assess the monotonic or linear relationship of each feature in a dilution series or multiple injection volumes. We demonstrate this approach in metabolomics data obtained from a uniform biological matrix (NIST SRM 1950) and a variable biological matrix (murine kidney tissue). The code is provided to facilitate implementation of this data processing method.
特征发现是一种常用的方法,用于处理无目标的质谱(MS)数据,以获得样品中存在的化学物质列表。大多数特征发现算法盲目地搜索独特描述符(,/,保留时间和迁移率)的模式,并提供未注释特征的列表。需要针对无目标 MS 数据的解决方案,独立于化学物质或来源,基于测量质量评估特征,目的是提高解释能力。在这里,我们报告信号响应评估作为一种方法,用于评估无目标 MS 数据中观察到的各个特征。该方法的基础是所有 MS 测量中普遍存在的量和响应之间的关系。可以使用三个具有用户定义参数的不同指标来评估稀释系列或多个进样体积中每个特征的单调或线性关系。我们在从均匀生物基质(NIST SRM 1950)和可变生物基质(鼠肾组织)获得的代谢组学数据中演示了这种方法。提供了代码来促进这种数据处理方法的实施。