Suppr超能文献

高保真度表示代谢组:LC-MS 为基础的全局分析中的范围和响应作为质量控制因素。

Representing the Metabolome with High Fidelity: Range and Response as Quality Control Factors in LC-MS-Based Global Profiling.

机构信息

National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom.

Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.

出版信息

Anal Chem. 2021 Feb 2;93(4):1924-1933. doi: 10.1021/acs.analchem.0c03848. Epub 2021 Jan 15.

Abstract

Liquid chromatography-mass spectrometry (LC-MS) is a powerful and widely used technique for measuring the abundance of chemical species in living systems. Its sensitivity, analytical specificity, and direct applicability to biofluids and tissue extracts impart great promise for the discovery and mechanistic characterization of biomarker panels for disease detection, health monitoring, patient stratification, and treatment personalization. Global metabolic profiling applications yield complex data sets consisting of multiple feature measurements for each chemical species observed. While this multiplicity can be useful in deriving enhanced analytical specificity and chemical identities from LC-MS data, data set inflation and quantitative imprecision among related features is problematic for statistical analyses and interpretation. This Perspective provides a critical evaluation of global profiling data fidelity with respect to measurement linearity and the quantitative response variation observed among components of the spectra. These elements of data quality are widely overlooked in untargeted metabolomics yet essential for the generation of data that accurately reflect the metabolome. Advanced feature filtering informed by linear range estimation and analyte response factor assessment is advocated as an attainable means of controlling LC-MS data quality in global profiling studies and exemplified herein at both the feature and data set level.

摘要

液相色谱-质谱联用技术(LC-MS)是一种强大且广泛应用的技术,用于测量生物体系中化学物质的丰度。其灵敏度、分析特异性以及对生物体液和组织提取物的直接适用性,为疾病检测、健康监测、患者分层和治疗个体化的生物标志物面板的发现和机制特征提供了巨大的潜力。 全局代谢组学分析应用产生了复杂的数据集,其中包含每个观察到的化学物质的多个特征测量值。 虽然这种多样性可用于从 LC-MS 数据中获得增强的分析特异性和化学身份,但数据集中相关特征之间的膨胀和定量不精确对于统计分析和解释是有问题的。 本观点批判性地评估了全局分析数据的保真度,具体涉及测量线性度和光谱成分观察到的定量响应变化。 在非靶向代谢组学中,这些数据质量元素被广泛忽视,但对于生成准确反映代谢组的高质量数据是必不可少的。 提倡通过线性范围估计和分析物响应因子评估进行高级特征过滤,作为控制全局分析研究中 LC-MS 数据质量的一种可行手段,并在此处以特征和数据集级别进行了示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验