He Peng, Zhou Gang, Yao Yao, Wang Zhe, Yang Hao
Zhengzhou University of Technology, Zhengzhou, China.
PLA Information Engineering University, Zhengzhou, China.
Sci Rep. 2023 Jul 31;13(1):12364. doi: 10.1038/s41598-023-38857-5.
Knowledge graphs (KGs) are of great importance to many artificial intelligence applications, but they usually suffer from the incomplete problem. Knowledge graph embedding (KGE), which aims to represent entities and relations in low-dimensional continuous vector spaces, has been proved to be a promising approach for KG completion. Traditional KGE methods only concentrate on structured triples, while paying less attention to the type information of entities. In fact, incorporating entity types into embedding learning could further improve the performance of KG completion. To this end, we propose a universal Type-augmented Knowledge graph Embedding framework (TaKE) which could utilize type features to enhance any traditional KGE models. TaKE automatically captures type features under no explicit type information supervision. And by learning different type representations of each entity, TaKE could distinguish the diversity of types specific to distinct relations. We also design a new type-constrained negative sampling strategy to construct more effective negative samples for the training process. Extensive experiments on four datasets from three real-world KGs (Freebase, WordNet and YAGO) demonstrate the merits of our proposed framework. In particular, combining TaKE with the recent tensor factorization KGE model SimplE can achieve state-of-the-art performance on the KG completion task.
知识图谱(KGs)对许多人工智能应用非常重要,但它们通常存在不完整的问题。知识图谱嵌入(KGE)旨在在低维连续向量空间中表示实体和关系,已被证明是一种很有前景的知识图谱补全方法。传统的KGE方法只专注于结构化三元组,而较少关注实体的类型信息。事实上,将实体类型纳入嵌入学习可以进一步提高知识图谱补全的性能。为此,我们提出了一种通用的类型增强知识图谱嵌入框架(TaKE),它可以利用类型特征来增强任何传统的KGE模型。TaKE在没有明确类型信息监督的情况下自动捕捉类型特征。通过学习每个实体的不同类型表示,TaKE可以区分不同关系特定的类型多样性。我们还设计了一种新的类型约束负采样策略,为训练过程构建更有效的负样本。在来自三个真实世界知识图谱(Freebase、WordNet和YAGO)的四个数据集上进行的广泛实验证明了我们提出的框架的优点。特别是,将TaKE与最近的张量分解KGE模型SimplE相结合,可以在知识图谱补全任务上实现最先进的性能。