Zhang Wen, Gui Siwei, Zhang Zihan, Li Wanming, Wang Xinxin, Wei Junhong, Tu Shuibin, Zhong Linxin, Yang Wu, Ye Hongjun, Sun Yongming, Peng Xinwen, Huang Jianyu, Yang Hui
Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Small. 2023 Nov;19(48):e2303864. doi: 10.1002/smll.202303864. Epub 2023 Jul 31.
Silicon (Si) is regarded as one of the most promising anode materials for high-performance lithium-ion batteries (LIBs). However, how to mitigate its poor intrinsic conductivity and the lithiation/delithiation-induced large volume change and thus structural degradation of Si electrodes without compromising their energy density is critical for the practical application of Si in LIBs. Herein, an integration strategy is proposed for preparing a compact micron-sized Si@G/CNF@NC composite with a tight binding and dual-encapsulated architecture that can endow it with superior electrical conductivity and deformation resistance, contributing to excellent cycling stability and good rate performance in thick electrode. At an ultrahigh mass loading of 10.8 mg cm , the Si@G/CNF@NC electrode also presents a large initial areal capacity of 16.7 mA h cm (volumetric capacity of 2197.7 mA h cm ). When paired with LiNi Co Mn O , the pouch-type full battery displays a highly competitive gravimetric (volumetric) energy density of ≈459.1 Wh kg (≈1235.4 Wh L ).
硅(Si)被认为是高性能锂离子电池(LIBs)最有前景的负极材料之一。然而,如何在不降低其能量密度的情况下减轻其固有的低导电性以及锂化/脱锂过程中引起的大体积变化,从而避免硅电极的结构退化,对于硅在锂离子电池中的实际应用至关重要。在此,提出了一种集成策略,用于制备具有紧密结合和双包覆结构的致密微米级Si@G/CNF@NC复合材料,该结构可赋予其优异的导电性和抗变形能力,有助于厚电极具有出色的循环稳定性和良好的倍率性能。在10.8 mg cm 的超高质量负载下,Si@G/CNF@NC电极还具有16.7 mA h cm 的大初始面积容量(体积容量为2197.7 mA h cm )。当与LiNi Co Mn O 配对时,软包型全电池显示出极具竞争力的重量(体积)能量密度,约为459.1 Wh kg (约1235.4 Wh L )。