Suppr超能文献

利用机器学习增强牵引力显微镜的稳健性、精度和速度。

Enhancing robustness, precision, and speed of traction force microscopy with machine learning.

机构信息

Department of Physics, TU Dortmund University, Dortmund, Germany.

Department of Physics, TU Dortmund University, Dortmund, Germany.

出版信息

Biophys J. 2023 Sep 5;122(17):3489-3505. doi: 10.1016/j.bpj.2023.07.025. Epub 2023 Jul 31.

Abstract

Traction patterns of adherent cells provide important information on their interaction with the environment, cell migration, or tissue patterns and morphogenesis. Traction force microscopy is a method aimed at revealing these traction patterns for adherent cells on engineered substrates with known constitutive elastic properties from deformation information obtained from substrate images. Conventionally, the substrate deformation information is processed by numerical algorithms of varying complexity to give the corresponding traction field via solution of an ill-posed inverse elastic problem. We explore the capabilities of a deep convolutional neural network as a computationally more efficient and robust approach to solve this inversion problem. We develop a general purpose training process based on collections of circular force patches as synthetic training data, which can be subjected to different noise levels for additional robustness. The performance and the robustness of our approach against noise is systematically characterized for synthetic data, artificial cell models, and real cell images, which are subjected to different noise levels. A comparison with state-of-the-art Bayesian Fourier transform traction cytometry reveals the precision, robustness, and speed improvements achieved by our approach, leading to an acceleration of traction force microscopy methods in practical applications.

摘要

黏附细胞的牵引力模式为其与环境的相互作用、细胞迁移或组织形态发生提供了重要信息。牵引力显微镜是一种方法,旨在从具有已知本构弹性特性的工程化基底的变形信息中揭示这些在基底上黏附的细胞的牵引力模式,该方法适用于解决具有病态反问题的基底变形信息。传统上,通过解算病态反问题,使用具有不同复杂程度的数值算法来处理基底变形信息,从而获得相应的牵引力场。我们探索了深度卷积神经网络作为一种更有效、更稳健的计算方法来解决这个反问题的能力。我们开发了一种通用的训练过程,基于作为合成训练数据的圆形力斑集,其可以承受不同的噪声水平,以增加额外的稳健性。我们的方法对合成数据、人工细胞模型和真实细胞图像的性能和抗噪能力进行了系统的特征描述,这些数据和模型都受到不同噪声水平的影响。与最先进的贝叶斯傅里叶变换牵引力细胞术的比较显示了我们的方法在精度、稳健性和速度方面的改进,从而加速了在实际应用中牵引力显微镜方法的应用。

相似文献

4
Compressed sensing traction force microscopy.压缩感知牵引力显微镜术
Acta Biomater. 2015 Oct;26:286-94. doi: 10.1016/j.actbio.2015.08.023. Epub 2015 Aug 21.
6
Traction force microscopy by deep learning.基于深度学习的牵引力显微镜技术。
Biophys J. 2021 Aug 3;120(15):3079-3090. doi: 10.1016/j.bpj.2021.06.011. Epub 2021 Jun 30.
8
Inverse tissue mechanics of cell monolayer expansion.细胞单层扩展的反向组织力学。
PLoS Comput Biol. 2018 Mar 1;14(3):e1006029. doi: 10.1371/journal.pcbi.1006029. eCollection 2018 Mar.

本文引用的文献

2
Traction force microscopy - Measuring the forces exerted by cells.牵引力显微镜 - 测量细胞所施加的力。
Micron. 2021 Nov;150:103138. doi: 10.1016/j.micron.2021.103138. Epub 2021 Aug 12.
3
Traction force microscopy by deep learning.基于深度学习的牵引力显微镜技术。
Biophys J. 2021 Aug 3;120(15):3079-3090. doi: 10.1016/j.bpj.2021.06.011. Epub 2021 Jun 30.
5
Learning data-driven discretizations for partial differential equations.学习偏微分方程的数据驱动离散化。
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15344-15349. doi: 10.1073/pnas.1814058116. Epub 2019 Jul 16.
9
10
Measuring cellular traction forces on non-planar substrates.测量非平面基底上的细胞牵引力。
Interface Focus. 2016 Oct 6;6(5):20160024. doi: 10.1098/rsfs.2016.0024.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验