Sun Yiwei, Ni Fengchao, Huang Yiwen, Liu Haigang, Chen Xianfeng
Opt Lett. 2023 Aug 1;48(15):4049-4052. doi: 10.1364/OL.493442.
The wavemeter is an important instrument for spectrum analysis, widely used in spectral calibration, remote sensing, atomic physics, and high-precision metrology. However, near-infrared (NIR) wavemeters require infrared-sensitive detectors that are expensive and less sensitive compared to silicon-based visible light detectors. To circumvent these limitations, we propose an NIR speckle wavemeter based on nonlinear frequency conversion. We combine a scattering medium and the deep learning technique to invert the nonlinear mapping of the NIR wavelength and speckles in the visible wave band. With the outstanding performance of deep learning, a high-precision wavelength resolution of 1 pm is achievable in our experiment. We further demonstrate the robustness of our system and show that the recognition of power parameters and multi-spectral lines is also feasible. The proposed method offers a convenient and flexible way to measure NIR light, and it offers the possibility of cost reduction in miniaturized wavemeter systems.
波长计是光谱分析的重要仪器,广泛应用于光谱校准、遥感、原子物理和高精度计量领域。然而,近红外(NIR)波长计需要对红外敏感的探测器,与基于硅的可见光探测器相比,这种探测器价格昂贵且灵敏度较低。为了克服这些限制,我们提出了一种基于非线性频率转换的近红外散斑波长计。我们将散射介质与深度学习技术相结合,以反转近红外波长与可见光波段散斑的非线性映射。凭借深度学习的出色性能,在我们的实验中可实现1皮米的高精度波长分辨率。我们进一步证明了我们系统的稳健性,并表明功率参数和多谱线的识别也是可行的。所提出的方法为测量近红外光提供了一种方便灵活的方式,并为小型化波长计系统的成本降低提供了可能性。