Suppr超能文献

结合深度学习实现的飞秒激光诱导表面纳米结构的紧凑型波长计。

Compact wavemeter incorporating femtosecond laser-induced surface nanostructures enabled by deep learning.

作者信息

Cai Rui, Xiao Yao, Sui Xiaolin, Li Yongyi, Wu Ziyan, Wu Jie, Deng Guoliang, Zhou Hao, Zhou Shouhuan

出版信息

Opt Lett. 2023 Aug 1;48(15):3961-3964. doi: 10.1364/OL.492737.

Abstract

Miniature spectrometers have the advantage of high portability and integration, making them quick and easy to use in various working environments. The speckle patterns produced by light scattering through a disordered medium are highly sensitive to wavelength changes and can be used to design high-precision wavemeters and spectrometers. In this study, we used a self-organized, femtosecond laser-prepared nanostructure with a characteristic size of approximately 30-50 nm on a sapphire surface as a scattering medium to effectively induce spectral dispersion. By leveraging this random scattering structure, we successfully designed a compact scattering wavelength meter with efficient scattering properties. The collected speckle patterns were identified and classified using a neural network, and the variation of speckle patterns with wavelength was accurately extracted, achieving a measurement accuracy of 10 pm in multiple wavelength ranges. The system can effectively suppress instrument and environmental noise with high robustness. This work paves the way for the development of compact high-precision wavemeters.

摘要

微型光谱仪具有高度便携性和集成性的优点,使其能够在各种工作环境中快速且方便地使用。光通过无序介质散射产生的散斑图案对波长变化高度敏感,可用于设计高精度的波长计和光谱仪。在本研究中,我们使用了一种在蓝宝石表面上具有约30 - 50纳米特征尺寸的自组织飞秒激光制备的纳米结构作为散射介质,以有效诱导光谱色散。通过利用这种随机散射结构,我们成功设计了一种具有高效散射特性的紧凑型散射波长计。使用神经网络对收集到的散斑图案进行识别和分类,并准确提取散斑图案随波长的变化,在多个波长范围内实现了10皮米的测量精度。该系统能够有效抑制仪器和环境噪声,具有很高的鲁棒性。这项工作为紧凑型高精度波长计的发展铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验