Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, MI, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA.
Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA.
SLAS Discov. 2023 Oct;28(7):316-324. doi: 10.1016/j.slasd.2023.07.003. Epub 2023 Jul 31.
Diabetes poses a global health crisis affecting individuals across age groups and backgrounds, with a prevalence estimate of 700 million people worldwide by 2045. Current therapeutic strategies primarily rely on insulin therapy or hypoglycemic agents, which fail to address the root cause of the disease - the loss of pancreatic insulin-producing beta-cells. Therefore, bioassays that recapitulate intact islets are needed to enable drug discovery for beta-cell replenishment, protection from beta-cell loss, and islet-cell interactions. Standard cancer insulinoma beta-cell lines MIN6 and INS-1 have been used to interrogate beta-cell metabolic pathways and function but are not suitable for studying proliferative effects. Screening using primary human/rodent intact islets offers a higher level of physiological relevance to enhance diabetes drug discovery and development. However, the 3-dimensionality of intact islets have presented challenges in developing robust, high-throughput assays to detect beta-cell proliferative effects. Established methods rely on either dissociated islet cells plated in 2D monolayer cultures for imaging or reconstituted pseudo-islets formed in round bottom plates to achieve homogeneity. These approaches have significant limitations due to the islet cell dispersion process. To address these limitations, we have developed a robust, intact ex vivo pancreatic islet bioassay in 384-well format that is capable of detecting diabetes-relevant endpoints including beta-cell proliferation, chemoprotection, and islet spatial morphometrics.
糖尿病是一种全球性的健康危机,影响着各个年龄段和背景的人群,预计到 2045 年,全球将有 7 亿人患有糖尿病。目前的治疗策略主要依赖于胰岛素治疗或降血糖药物,但这些方法都无法解决疾病的根本原因——胰岛中产生胰岛素的β细胞的丧失。因此,需要能够重现完整胰岛的生物测定法,以实现用于β细胞补充、防止β细胞损失和胰岛细胞相互作用的药物发现。标准的癌症胰岛素瘤β细胞系 MIN6 和 INS-1 已被用于研究β细胞代谢途径和功能,但不适合研究增殖效应。使用原代人/啮齿动物完整胰岛进行筛选可以提供更高水平的生理相关性,以增强糖尿病药物的发现和开发。然而,完整胰岛的三维结构在开发用于检测β细胞增殖效应的稳健、高通量测定法方面带来了挑战。已建立的方法依赖于在 2D 单层培养物中铺板的分离胰岛细胞进行成像,或在平底孔板中重建的拟胰岛以实现均一性。这些方法由于胰岛细胞分散过程存在显著的局限性。为了解决这些局限性,我们开发了一种稳健的、基于 384 孔板的完整离体胰腺胰岛生物测定法,能够检测与糖尿病相关的终点,包括β细胞增殖、化学保护和胰岛空间形态计量学。