Suppr超能文献

用于催化塑料升级回收的集成光致变色-光热过程

Integrated Photochromic-Photothermal Processes for Catalytic Plastic Upcycling.

作者信息

Liu Yu, Zhang Congyang, Feng Ji, Wang Xuchun, Ding Zhifeng, He Le, Zhang Qiao, Chen Jinxing, Yin Yadong

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.

Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7, Canada.

出版信息

Angew Chem Int Ed Engl. 2023 Sep 18;62(38):e202308930. doi: 10.1002/anie.202308930. Epub 2023 Aug 11.

Abstract

Incorporating high-energy ultraviolet (UV) photons into photothermal catalytic processes may enable photothermal-photochemical synergistic catalysis, which represents a transformative technology for waste plastic recycling. The major challenge is avoiding side reactions and by-products caused by these energetic photons. Here, we break through the limitation of the existing photothermal conversion mechanism and propose a photochromic-photothermal catalytic system based on polyol-ligated TiO nanocrystals. Upon UV or sunlight irradiation, the chemically bonded polyols can rapidly capture holes generated by TiO , enabling photogenerated electrons to reduce Ti to Ti and produce oxygen vacancies. The resulting abundant defect energy levels boost sunlight-to-heat conversion efficiency, and simultaneously the oxygen vacancies facilitate polyester glycolysis by activating the nucleophilic addition-elimination process. As a result, compared to commercial TiO (P25), we achieve 6-fold and 12.2-fold performance enhancements under thermal and photothermal conditions, respectively, while maintaining high selectivity to high-valued monomers. This paradigm-shift strategy directs energetic UV photons for activating catalysts and avoids their interaction with reactants, opening the possibility of substantially elevating the efficiency of more solar-driven catalysis.

摘要

将高能紫外(UV)光子引入光热催化过程可能实现光热-光化学协同催化,这是一种用于废塑料回收的变革性技术。主要挑战在于避免这些高能光子引发的副反应和副产物。在此,我们突破了现有光热转换机制的限制,提出了一种基于多元醇连接的TiO纳米晶体的光致变色-光热催化体系。在紫外光或阳光照射下,化学键合的多元醇能够迅速捕获TiO产生的空穴,使光生电子将Ti还原为Ti并产生氧空位。由此产生的丰富缺陷能级提高了阳光到热的转换效率,同时氧空位通过激活亲核加成-消除过程促进聚酯糖酵解。结果,与商用TiO(P25)相比,我们在热条件和光热条件下分别实现了6倍和12.2倍的性能提升,同时对高价值单体保持高选择性。这种范式转变策略引导高能紫外光子激活催化剂,避免其与反应物相互作用,为大幅提高更多太阳能驱动催化的效率开辟了可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验