Rezaei Majid, Sakong Sung, Groß Axel
Institute of Theoretical Chemistry, Ulm University, Oberberghof 7, 89081 Ulm, Germany.
Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Helmholtzstraße 11, 89069 Ulm, Germany.
J Chem Theory Comput. 2023 Sep 12;19(17):5712-5730. doi: 10.1021/acs.jctc.3c00171. Epub 2023 Aug 1.
Accurate modeling of highly concentrated aqueous solutions, such as water-in-salt (WiS) electrolytes in battery applications, requires proper consideration of polarization contributions to atomic interactions. Within the force field molecular dynamics (MD) simulations, the atomic polarization can be accounted for at various levels. Nonpolarizable force fields implicitly account for polarization effects by incorporating them into their van der Waals interaction parameters. They can additionally mimic electron polarization within a mean-field approximation through ionic charge scaling. Alternatively, explicit polarization description methods, such as the Drude oscillator model, can be selectively applied to either a subset of polarizable atoms or all polarizable atoms to enhance simulation accuracy. The trade-off between simulation accuracy and computational efficiency highlights the importance of determining an optimal level of accounting for atomic polarization. In this study, we analyze different approaches to include polarization effects in MD simulations of WiS electrolytes, with an example of a Na-OTF solution. These approaches range from a nonpolarizable to a fully polarizable force field. After careful examination of computational costs, simulation stability, and feasibility of controlling the electrolyte properties, we identify an efficient combination of force fields: the Drude polarizable force field for salt ions and non-polarizable models for water. This cost-effective combination is sufficiently flexible to reproduce a broad range of electrolyte properties, while ensuring simulation stability over a relatively wide range of force field parameters. Furthermore, we conduct a thorough evaluation of the influence of various force field parameters on both the simulation results and technical requirements, with the aim of establishing a general framework for force field optimization and facilitating parametrization of similar systems.
对高浓度水溶液进行精确建模,例如电池应用中的盐包水(WiS)电解质,需要适当考虑极化对原子相互作用的贡献。在力场分子动力学(MD)模拟中,原子极化可以在不同层面上进行考虑。非极化力场通过将极化效应纳入其范德华相互作用参数来隐式地考虑极化效应。它们还可以通过离子电荷缩放,在平均场近似下模拟电子极化。另外,明确的极化描述方法,如德鲁德振子模型,可以选择性地应用于可极化原子的一个子集或所有可极化原子,以提高模拟精度。模拟精度和计算效率之间的权衡凸显了确定原子极化最佳考虑水平的重要性。在本研究中,我们以Na-OTF溶液为例,分析了在WiS电解质的MD模拟中纳入极化效应的不同方法。这些方法从非极化力场到完全极化力场不等。在仔细研究了计算成本、模拟稳定性以及控制电解质性质的可行性之后,我们确定了一种有效的力场组合:盐离子采用德鲁德极化力场,水采用非极化模型。这种具有成本效益的组合足够灵活,能够再现广泛的电解质性质,同时在相对较宽的力场参数范围内确保模拟稳定性。此外,我们全面评估了各种力场参数对模拟结果和技术要求的影响,旨在建立一个力场优化的通用框架,并促进类似系统的参数化。