Suppr超能文献

同源碱性螺旋-环-螺旋转录因子诱导扭转应力DNA产生不同的变形:一种潜在的转录调控机制。

Homologous basic helix-loop-helix transcription factors induce distinct deformations of torsionally-stressed DNA: a potential transcription regulation mechanism.

作者信息

Hörberg Johanna, Moreau Kevin, Reymer Anna

机构信息

Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden.

出版信息

QRB Discov. 2022 Jun 10;3:e4. doi: 10.1017/qrd.2022.5. eCollection 2022.

Abstract

Changing torsional restraints on DNA is essential for the regulation of transcription. Torsional stress, introduced by RNA polymerase, can propagate along chromatin facilitating topological transitions and modulating the specific binding of transcription factors (TFs) to DNA. Despite the importance, the mechanistic details on how torsional stress impacts the TFs-DNA complexation remain scarce. Herein, we address the impact of torsional stress on DNA complexation with homologous human basic helix-loop-helix (BHLH) hetero- and homodimers: MycMax, MadMax and MaxMax. The three TF dimers exhibit specificity towards the same DNA consensus sequence, the -box response element, while regulating different transcriptional pathways. Using microseconds-long atomistic molecular dynamics simulations together with the torsional restraint that controls DNA total helical twist, we gradually over- and underwind naked and complexed DNA to a maximum of ± 5°/bp step. We observe that the binding of the BHLH dimers results in a similar increase in DNA torsional rigidity. However, under torsional stress the BHLH dimers induce distinct DNA deformations, characterised by changes in DNA grooves geometry and a significant asymmetric DNA bending. Supported by bioinformatics analyses, our data suggest that torsional stress may contribute to the execution of differential transcriptional programs of the homologous TFs by modulating their collaborative interactions.

摘要

改变DNA的扭转限制对于转录调控至关重要。由RNA聚合酶引入的扭转应力可沿染色质传播,促进拓扑转变并调节转录因子(TFs)与DNA的特异性结合。尽管其很重要,但关于扭转应力如何影响TFs-DNA复合的机制细节仍然很少。在此,我们研究了扭转应力对与同源人类碱性螺旋-环-螺旋(BHLH)异源和同源二聚体(MycMax、MadMax和MaxMax)的DNA复合的影响。这三种TF二聚体对相同的DNA共有序列(即E-box反应元件)表现出特异性,同时调节不同的转录途径。使用长达微秒的原子分子动力学模拟以及控制DNA总螺旋扭曲的扭转限制,我们将裸露的和复合的DNA逐渐过度扭转和欠扭转,最大步长为±5°/bp。我们观察到,BHLH二聚体的结合导致DNA扭转刚性有类似的增加。然而,在扭转应力下,BHLH二聚体诱导出不同的DNA变形,其特征是DNA沟槽几何形状的变化和明显的不对称DNA弯曲。在生物信息学分析的支持下,我们的数据表明,扭转应力可能通过调节同源TFs的协同相互作用,有助于执行它们的差异转录程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be13/10392670/b0e49d2ba476/S2633289222000059_figAb.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验