Dejean Alain, Azémar Frédéric, Naskrecki Piotr, Tindo Maurice, Rossi Vivien, Faucher Christian, Gryta Hervé
Laboratoire Écologie Fonctionnelle et Environnement Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS) Toulouse France.
UMR EcoFoG, AgroParisTech Cirad, CNRS, INRA, Université des Antilles, Université de Guyane Kourou France.
Ecol Evol. 2023 Jul 28;13(8):e10386. doi: 10.1002/ece3.10386. eCollection 2023 Aug.
The large amount of dead plant biomass caused by the final extinction events triggered a fungi proliferation that mostly differentiated into saprophytes degrading organic matter; others became parasites, predators, likely commensals, and mutualists. Among the last, many have relationships with ants, the most emblematic seen in the Neotropical myrmicine Attina that cultivate Basidiomycota for food. Among them, leaf-cutting, fungus-growing species illustrate an ecological innovation because they grow fungal gardens from fresh plant material rather than arthropod frass and plant debris. Myrmecophytes shelter "plant-ants" in hollow structures, the domatia, whose inner walls are lined with thin-walled Ascomycota hyphae that, in certain cases, are eaten by the ants, showing a form of convergence. Typically, these Ascomycota have antibacterial properties illustrating cases of farming for protection. Ant gardens, or mutualistic associations between certain ant species and epiphytes, shelter endophytic fungi that promote the growth of the epiphytes. Because the cell walls of certain Ascomycota hyphae remain sturdy after the death of the mycelium, they form resistant fibers used by ants to reinforce their constructions (e.g., galleries, shelters for tended hemipterans, and carton nests). Thus, we saw cases of "true" fungal agriculture involving planting, cultivating, and harvesting Basidiomycota for food with Attina. A convergence with "plant-ants" feeding on Ascomycota whose antibacterial activity is generally exploited (i.e., farming for protection). The growth of epiphytes was promoted by endophytic fungi in ant gardens. Finally, farming for structural materials occurred with, in one case, a leaf-cutting, fungus-growing ant using Ascomycota fibers to reinforce its nests.
最终灭绝事件导致大量植物生物量死亡,引发了真菌的大量繁殖,其中大多数分化为降解有机物的腐生菌;其他的则成为寄生虫、捕食者、可能的共生菌和互利共生菌。在后者中,许多与蚂蚁有关系,最典型的例子是新热带区蚁亚科的阿蒂纳蚁,它们培育担子菌作为食物。其中,切叶种植真菌的物种体现了一种生态创新,因为它们用新鲜植物材料而非节肢动物粪便和植物残骸来培育真菌园。蚁栖植物在中空结构(即蚁窝)中为“植蚁”提供庇护,蚁窝内壁衬有薄壁子囊菌的菌丝,在某些情况下,这些菌丝会被蚂蚁吃掉,这显示出一种趋同现象。通常,这些子囊菌具有抗菌特性,说明了为保护而进行培育的情况。蚁园,即某些蚂蚁物种与附生植物之间的互利共生关系,庇护着促进附生植物生长的内生真菌。由于某些子囊菌的菌丝在菌丝体死亡后细胞壁仍然坚固,它们形成了蚂蚁用来加固其建筑(如通道、照顾半翅目的庇护所和纸箱巢)的抗性纤维。因此,我们看到了涉及种植、培育和收获担子菌作为食物的“真正”真菌农业的案例,如阿蒂纳蚁的情况。还存在与以子囊菌为食的“植蚁”的趋同现象,其抗菌活性通常被利用(即为保护而进行培育)。蚁园中的内生真菌促进了附生植物的生长。最后,出现了为获取结构材料而进行培育的情况,在一个案例中,一种切叶种植真菌的蚂蚁利用子囊菌纤维来加固其巢穴。