Suppr超能文献

2015 年至 2021 年期间在中国一家生育中心通过计算机辅助精液分析对 49189 名男性的精子质量趋势分析。

Trends in sperm quality by computer-assisted sperm analysis of 49,189 men during 2015-2021 in a fertility center from China.

机构信息

International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.

出版信息

Front Endocrinol (Lausanne). 2023 Jul 12;14:1194455. doi: 10.3389/fendo.2023.1194455. eCollection 2023.

Abstract

BACKGROUND

Sperm quality, including semen volume, sperm count, concentration, and total and progressive motility (collectively, "semen parameters"), has declined in the recent decades. Computer-assisted sperm analysis (CASA) provides sperm kinematic parameters, and the temporal trends of which remain unclear. Our objective is to examine the temporal trend of both semen parameters and kinematic parameters in Shanghai, China, in the recent years.

METHODS

This retrospective study analyzed semen parameters and kinematic parameters of 49,819 men attending our reproductive center by using CASA during 2015-2021. The total sample was divided into two groups: samples that surpassed the WHO guideline (2010) low reference limits ("above reference limit" group, ARL; n = 24,575) and samples that did not ("below reference limit" group, BRL; n = 24,614). One-way analysis of variance, Kruskal-Wallis test, independent samples -test, and covariance analysis were used to assess the differences among groups. Year, age, and abstinence time were included in the multiple linear regression model of the ARL group to adjust the confounders and depict the trends in sperm quality.

RESULTS

Among all the total sample and the ARL and BRL groups, the age of subjects increased in recent years. Semen volume and sperm count showed declined tendency with years in the total sample, the ARL and BRL groups, and the subgroup of age or abstinence time, whereas sperm velocities showed increased tendency with years on the contrary. The multiple linear regression model of the ARL group, adjusting for age and abstinence time, confirmed these trends. Semen volume (β1= -0.162; CI: -0.172, -0.152), sperm count (β1= -9.97; CI: -10.813, -9.128), sperm concentration (β1 = -0.535; CI: -0.772, -0.299), motility (β1 = -1.751; CI: -1.830, -1.672), and progressive motility (β1 = -1.12; CI: -0.201, -0.145) decreased with year, whereas curvilinear line velocity (VCL) (β1 = 3.058; CI: 2.912, 3.203), straight line velocity (VSL) (β1 = 2.075; CI: 1.990, 2.161), and average path velocity (VAP) (β1 = 2.305; CI: 2.224, 2.386) increased over time (all < 0.001). In addition, VCL, VSL, and VAP significantly declined with age and abstinence time.

CONCLUSION

The semen parameters declined, whereas the kinematic parameters increased over the recent years. We propose that, although sperm count and motility declined over time, sperm motion velocity increased, suggesting a possible compensatory mechanism of male fertility.

摘要

背景

近年来,精子质量(包括精液量、精子计数、浓度和总活力及前向运动活力,统称为“精液参数”)有所下降。计算机辅助精子分析(CASA)提供精子运动学参数,但其时间趋势尚不清楚。我们的目的是研究近年来中国上海的精液参数和运动学参数的时间趋势。

方法

本回顾性研究分析了 2015 年至 2021 年间在我院生殖中心采用 CASA 检测的 49819 名男性的精液参数和运动学参数。总样本分为两组:超过世界卫生组织(2010 年)低参考限值的样本(“高于参考限值”组,ARL;n=24575)和未超过参考限值的样本(“低于参考限值”组,BRL;n=24614)。采用单因素方差分析、Kruskal-Wallis 检验、独立样本 t 检验和协方差分析比较组间差异。采用多元线性回归模型,以年龄和禁欲时间为协变量,对 ARL 组进行调整,以描述精子质量的变化趋势。

结果

在总样本和 ARL 组及 BRL 组中,受试者年龄呈逐年增长趋势。在总样本、ARL 组和 BRL 组以及年龄或禁欲时间亚组中,精液量和精子计数均呈逐年下降趋势,而精子速度则呈逐年上升趋势。调整年龄和禁欲时间的 ARL 组多元线性回归模型证实了这些趋势。ARL 组中,精液量(β1= -0.162;CI:-0.172,-0.152)、精子计数(β1= -9.97;CI:-10.813,-9.128)、精子浓度(β1= -0.535;CI:-0.772,-0.299)、活力(β1= -1.751;CI:-1.830,-1.672)和前向运动活力(β1= -1.12;CI:-0.201,-0.145)随年份减少,而曲线速度(VCL)(β1= 3.058;CI:2.912,3.203)、直线速度(VSL)(β1= 2.075;CI:1.990,2.161)和平均路径速度(VAP)(β1= 2.305;CI:2.224,2.386)随时间增加(均 P < 0.001)。此外,VCL、VSL 和 VAP 随年龄和禁欲时间的增加而降低。

结论

近年来,精液参数下降,而运动学参数上升。我们提出,尽管精子计数和活力随时间下降,但精子运动速度增加,这表明男性生育力可能存在一种补偿机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fe5/10390301/1ae520af2082/fendo-14-1194455-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验